minval/maxval macro operators precedence fix. Thanks Luis Jim?nez.
/*
This file is part of CanFestival, a library implementing CanOpen Stack.
Copyright (C): Edouard TISSERANT and Francis DUPIN
See COPYING file for copyrights details.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stddef.h> /* for NULL */
#include <asm-m68hc12/portsaccess.h>
#include <asm-m68hc12/ports_def.h>
#include <asm-m68hc12/ports.h>
#include <interrupt.h>
#include <applicfg.h>
#include <candriver.h>
#include <timerhw.h>
#include "../include/def.h"
#include "../include/can.h"
#include "../include/objdictdef.h"
#include "../include/objacces.h"
#include "../include/canOpenDriver.h"
#include "../include/sdo.h"
#include "../include/pdo.h"
#include "../include/init.h"
#include "../include/timer.h"
#include "../include/lifegrd.h"
#include "../include/sync.h"
#include "../include/nmtSlave.h"
// HCS12 configuration
// -----------------------------------------------------
enum E_CanBaudrate
{
CAN_BAUDRATE_250K,
CAN_BAUDRATE_500K,
CAN_BAUDRATE_1M,
CAN_BAUDRATE_OLD_VALUE
};
const canBusTime CAN_Baudrates[] =
{
{
1, /* clksrc: Use the bus clock : 16 MHz, the freq. of the quartz's board */
3, /* brp : chose btw 0 and 63 (6 bits). freq time quantum = 16MHz / (brp + 1) */
0, /* sjw : chose btw 0 and 3 (2 bits). Sync on (sjw + 1 ) time quantum */
0, /* samp : chose btw 0 and 3 (2 bits) (samp + 1 ) samples per bit */
1, /* tseg2 : chose btw 0 and 7 (3 bits) Segment 2 width = (tseg2 + 1) tq */
12, /* tseg1 : chose btw 0 and 15 (4 bits) Segment 1 width = (tseg1 + 1) tq */
/*
With these values,
- The width of the bit time is 16 time quantum :
- 1 tq for the SYNC segment (could not be modified)
- 13 tq for the TIME 1 segment (tseg1 = 12)
- 2 tq for the TIME 2 segment (tseg2 = 1)
- Because the bus clock of the MSCAN is 16 MHZ, and the
freq of the time quantum is 4 MHZ (brp = 3+1), and there are 16 tq in the bit time,
so the freq of the bit time is 250 kHz.
*/
},
{
1, /* clksrc: Use the bus clock : 16 MHz, the freq. of the quartz's board */
1, /* brp : chose btw 0 and 63 (6 bits). freq time quantum = 16MHz / (brp + 1) */
0, /* sjw : chose btw 0 and 3 (2 bits). Sync on (sjw + 1 ) time quantum */
0, /* samp : chose btw 0 and 3 (2 bits) (samp + 1 ) samples per bit */
1, /* tseg2 : chose btw 0 and 7 (3 bits) Segment 2 width = (tseg2 + 1) tq */
12, /* tseg1 : chose btw 0 and 15 (4 bits) Segment 1 width = (tseg1 + 1) tq */
/*
With these values,
- The width of the bit time is 16 time quantum :
- 1 tq for the SYNC segment (could not be modified)
- 13 tq for the TIME 1 segment (tseg1 = 12)
- 2 tq for the TIME 2 segment (tseg2 = 1)
- Because the bus clock of the MSCAN is 16 MHZ, and the
freq of the time quantum is 8 MHZ (brp = 1+1), and there are 16 tq in the bit time,
so the freq of the bit time is 500 kHz.
*/
},
{
1, /* clksrc: Use the bus clock : 16 MHz, the freq. of the quartz's board */
1, /* brp : chose btw 0 and 63 (6 bits). freq time quantum = 16MHz / (brp + 1) */
0, /* sjw : chose btw 0 and 3 (2 bits). Sync on (sjw + 1 ) time quantum */
0, /* samp : chose btw 0 and 3 (2 bits) (samp + 1 ) samples per bit */
1, /* tseg2 : chose btw 0 and 7 (3 bits) Segment 2 width = (tseg2 + 1) tq */
4, /* tseg1 : chose btw 0 and 15 (4 bits) Segment 1 width = (tseg1 + 1) tq */
/*
With these values,
- The width of the bit time is 16 time quantum :
- 1 tq for the SYNC segment (could not be modified)
- 5 tq for the TIME 1 segment (tseg1 = 4)
- 2 tq for the TIME 2 segment (tseg2 = 1)
- Because the bus clock of the MSCAN is 16 MHZ, and the
freq of the time quantum is 8 MHZ (brp = 1+1), and there are 8 tq in the bit time,
so the freq of the bit time is 1 MHz.
*/
},
{
1, /* clksrc: Use the bus clock : 16 MHz, the freq. of the quartz's board */
0, /* brp : chose btw 0 and 63 (6 bits). freq time quantum = 16MHz / (brp + 1) */
1, /* sjw : chose btw 0 and 3 (2 bits). Sync on (sjw + 1 ) time quantum */
1, /* samp : chose btw 0 and 3 (2 bits) (samp + 1 ) samples per bit */
4, /* tseg2 : chose btw 0 and 7 (3 bits) Segment 2 width = (tseg2 + 1) tq */
9, /* tseg1 : chose btw 0 and 15 (4 bits) Segment 1 width = (tseg1 + 1) tq */
/*
With these values,
- The width of the bit time is 16 time quantum :
- 1 tq for the SYNC segment (could not be modified)
- 10 tq for the TIME 1 segment (tseg1 = 9)
- 5 tq for the TIME 2 segment (tseg2 = 4)
- Because the bus clock of the MSCAN is 16 MHZ, and the
freq of the time quantum is 16 MHZ (brp = 0), and there are 16 tq in the bit time,
so the freq of the bit time is 1 MHz.
*/
}
};
// The variables sent or updated by PDO
// -----------------------------------------------------
extern UNS8 seconds; // Mapped at index 0x2000, subindex 0x1
extern UNS8 minutes; // Mapped at index 0x2000, subindex 0x2
extern UNS8 hours; // Mapped at index 0x2000, subindex 0x3
extern UNS8 day; // Mapped at index 0x2000, subindex 0x4
extern UNS32 canopenErrNB; // Mapped at index 0x6000, subindex 0x0
extern UNS32 canopenErrVAL; // Mapped at index 0x6001, subindex 0x0
// Required definition variables
// -----------------------------
// The variables that you should define for debugging.
// They are used by the macro MSG_ERR and MSG_WAR in applicfg.h
// if the node is a slave, they can be mapped in the object dictionnary.
// if not null, allow the printing of message to the console
// Could be managed by PDO
UNS8 printMsgErrToConsole = 1;
UNS8 printMsgWarToConsole = 1;
/*************************User's variables declaration**************************/
UNS8 softCount = 0;
UNS8 lastMinute = 0;
UNS8 lastSecond = 0;
UNS8 sendingError = 0;
//--------------------------------FONCTIONS-------------------------------------
/* You *must* have these 2 functions in your code*/
void heartbeatError(UNS8 heartbeatID);
void SD0timeoutError(UNS8 bus_id, UNS8 line);
// Interruption timer 3. (The timer 4 is used by CanOpen)
void __attribute__((interrupt)) timer3Hdl (void);
void incDate(void);
void initLeds(void);
void initTimerClk(void);
void initCanHCS12 (void);
void initialisation(void);
void preOperational(void);
void operational(void);
void stopped(void);
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Interruption timer 3
void __attribute__((interrupt)) timer3Hdl (void)
{
//IO_PORTS_8(PORTB) ^= 0x10;
//IO_PORTS_8(PORTB) &= ~0x20;
IO_PORTS_8(TFLG1) = 0x08; // RAZ du flag interruption timer 3
// Calcul evt suivant. Clock 8 MHz -> 8000 evt de 1 ms!! Doit tenir sur 16 bits
// Attention, ça change si on utilise la pll
// Lorsque le timer atteindra la valeur de TC3 (16 bits), l'interruption timer3Hdl sera déclenchée
// Si on utilise la PLL à 24 MHZ, alors la vitesse du bus est multipliée par 3.
/* Assume that our board uses a 16 MHz quartz */
/* Without pre-division, 8000 counts takes 1 ms. */
/* We are using a pre-divisor of 32. (register TSCR2) See in CanOpenDriverHC12/timerhw.c */
/* So 10000 counts takes 40 ms. */
/* We must have a soft counter of 25 to count a second. */
IO_PORTS_16(TC3H) += (10000); // IT every 40000 count.
softCount++;
if (softCount == 25) {
softCount = 0;
incDate();
}
}
//------------------------------------------------------------------------------
void heartbeatError(UNS8 heartbeatID)
{
MSG_ERR(0x1F00, "!!! No heart beat received from node : ", heartbeatID);
}
//------------------------------------------------------------------------------
void SD0timeoutError (UNS8 bus_id, UNS8 line)
{
// Informations on what occurs are in transfers[bus_id][line]....
// See scanSDOtimeout() in sdo.c
}
//------------------------------------------------------------------------------
// Incrementation of the date, every second
void incDate(void)
{
if (seconds == 59) {
seconds = 0;
if (minutes == 59) {
minutes = 0;
if (hours == 23) {
hours = 0;
day++;
}
else
hours++;
}
else
minutes++;
}
else
seconds++;
// Toggle the led 4 every seconds
IO_PORTS_8(PORTB) ^= 0x10;
}
//Initialisation of the port B for the leds.
void initLeds(void)
{
// Port B is output
IO_PORTS_8(DDRB)= 0XFF;
// RAZ
IO_PORTS_8(PORTB) = 0xFF;
}
//------------------------------------------------------------------------------
// Init the timer for the clock demo
void initTimerClk(void)
{
lock(); // Inhibe les interruptions
// Configuration du Channel 3
IO_PORTS_8(TIOS) |= 0x08; // Canal 3 en sortie
IO_PORTS_8(TCTL2) &= ~(0xC0); // Canal 3 déconnecté du pin de sortie
IO_PORTS_8(TIE) |= 0x08; // Autorise interruption Canal 3
IO_PORTS_8(TSCR1) |= 0x80; // Mise en route du timer
unlock(); // Autorise les interruptions
}
//------------------------------------------------------------------------------
// A placer avant initTimer de la bibliothèque CanOpen
/* void initTimerbis(void) */
/* { */
/* lock(); // Inhibe les interruptions */
/* // Configuration des IT Channels (0..3) */
/* IO_PORTS_8(TIOS) &= 0xF0; // Canals 0->3 en entrées. */
/* IO_PORTS_8(TCTL4) &= 0XFD; // Canal 0 détection sur front montant. */
/* IO_PORTS_8(TCTL4) |= 0X01; */
/* IO_PORTS_8(TCTL4) &= 0XF7; // Canal 1 détection sur front montant. */
/* IO_PORTS_8(TCTL4) |= 0X04; */
/* IO_PORTS_8(TCTL4) &= 0XDF; // Canal 2 détection sur front montant. */
/* IO_PORTS_8(TCTL4) |= 0X10; */
/* IO_PORTS_8(TCTL4) &= 0X7F; // Canal 3 détection sur front montant. */
/* IO_PORTS_8(TCTL4) |= 0X40; */
/* IO_PORTS_8(TSCR2) |= 0X05; // Pre-scaler = 32. */
/* IO_PORTS_8(ICOVW) |= 0x0F; // La sauvgrade des valeures de TC0 et TC0H */
/* // correspondant aux canals (0..3) jusqu'a la */
/* // prochaine lecture dans ces registres. */
/* MASK = IO_PORTS_8(ICSYS); */
/* MASK &= 0xFE; // Canals (0..3) en IC QUEUE MODE. */
/* MASK |= 0x08; // Canals (0..3) : génére une interruption aprés */
/* // la capture de deux valeures du timer sur detection */
/* // d'un front montant à l'entrée des canals (0..3). */
/* MASK |= 0x02; */
/* IO_PORTS_8(ICSYS) = MASK; */
/* IO_PORTS_16(TC0HH); // Vider le registre holding correspondant au canal0. */
/* IO_PORTS_8(TSCR1) |= 0x10; // RAZ automatique des flags d'interruption aprés lecture */
/* // dans les registres correspondant. */
/* IO_PORTS_8(TIE) |= 0x0F; // Autorise interruption Canals (0..3). */
/* IO_PORTS_8(TSCR2) |= 0X80; // Autorise interruption sur l'Overflow. */
/* unlock(); // Autorise les interruptions */
/* } */
//------------------------------------------------------------------------------
void initCanHCS12 (void)
{
//Init the HCS12 microcontroler for CanOpen
initHCS12();
// Init the HCS12 CAN driver
const canBusInit bi0 = {
0, /* no low power */
0, /* no time stamp */
1, /* enable MSCAN */
0, /* clock source : oscillator (In fact, it is not used) */
0, /* no loop back */
0, /* no listen only */
0, /* no low pass filter for wk up */
CAN_Baudrates[CAN_BAUDRATE_250K],
{
0x00, /* Filter on 16 bits. See Motorola Block Guide V02.14 fig 4-3 */
0x00, 0xFF, /* filter 0 hight accept all msg */
0x00, 0xFF, /* filter 0 low accept all msg */
0x00, 0xFF, /* filter 1 hight filter all of msg */
0x00, 0xFF, /* filter 1 low filter all of msg */
0x00, 0xFF, /* filter 2 hight filter most of msg */
0x00, 0xFF, /* filter 2 low filter most of msg */
0x00, 0xFF, /* filter 3 hight filter most of msg */
0x00, 0xFF, /* filter 3 low filter most of msg */
}
};
canInit(CANOPEN_LINE_NUMBER_USED, bi0); //initialize filters...
unlock(); // Allow interruptions
}
/*********************************************************************/
void initialisation( void )
{
//initcapteur(); //initialisation du capteur, timer, compteurs logiciels
initCanHCS12(); //initialisation du bus Can
MSG_WAR(0X3F05, "I am in INITIALISATION mode ", 0);
/* Defining the node Id */
setNodeId(0x05);
MSG_WAR(0x3F06, "My node ID is : ", getNodeId());
{
UNS8 *data;
UNS8 size;
UNS8 dataType;
// Manufacturer Device name (default = empty string)
getODentry(0x1008, 0x0, (void **)&data, &size, &dataType, 0);
MSG_WAR(0x3F09, data, 0);
// Manufacturer Hardware version. (default = compilation. date)
getODentry(0x1009, 0x0, (void **)&data, &size, &dataType, 0);
MSG_WAR(0x3F09, data, 0);
// Manufacturer Software version. (default = compilation. time)
getODentry(0x100A, 0x0, (void **)&data, &size, &dataType, 0);
MSG_WAR(0x3F09, data, 0);
}
initCANopenMain(); //initialisation du canopen
heartbeatInit(); //initialisation du lifeguarding
initResetMode();
initTimer(); //initialisation of the timer used by Canopen
initTimerClk();
}
/*********************************************************************/
void preOperational(void)
{
// Test if the heartBeat have been received. Send headbeat
heartbeatMGR();
// Read message
receiveMsgHandler(0);
}
/********************************************************************/
void operational( void )
{
// Init the errors
canopenErrNB = 0;
canopenErrVAL = 0;
// Test if the heartBeat have been received. Send headbeat
heartbeatMGR();
// Read message
receiveMsgHandler(0);
if (lastMinute != minutes) {
MSG_WAR(0x3F00, "event : minutes change -> node decides to send it. Value : ", minutes);
sendPDOevent( 0, &minutes );
lastMinute = minutes;
}
if (canopenErrNB == 0)
sendingError = 0;
if (lastSecond != seconds) {
MSG_WAR (0x3F50, "Seconds = ", seconds);
if ((seconds == 50) && (sendingError == 0))
{
MSG_ERR(0x1F55, "DEMO of ERROR. Sent by PDO. Value : ", 0xABCD);
sendingError = 1;
}
if (canopenErrNB) {
MSG_WAR(0x3F56, "ERROR nb : ", canopenErrNB);
}
lastSecond = seconds;
}
}
/*****************************************************************************/
void stopped( void )
{
heartbeatMGR();
// Read message
receiveMsgHandler(0);
}
/*****************************************************************************/
/********************************* MAIN ***************************************/
int main ()
{
e_nodeState lastState = Unknown_state;
/* CanOpen slave state machine */
/* ------------------------------------*/
while(1) { /* slave's state machine */
switch( getState() ) {
case Initialisation:
if (lastState != getState()) {
initLeds();
IO_PORTS_8(PORTB) &= ~ 0x01; // led 0 : ON
IO_PORTS_8(PORTB) |= 0x0E; // leds 1, 2, 3 : OFF
MSG_WAR(0X3F10, "Entering in INITIALISATION mode ", 0);
}
initialisation();
/* change automatically into pre_operational state */
lastState = Initialisation;
setState(Pre_operational);
break;
case Pre_operational:
if (lastState != getState()) {
IO_PORTS_8(PORTB) &= ~ 0x03; // leds 0, 1 : ON
IO_PORTS_8(PORTB) |= 0x0C; // leds 2, 3 : OFF
MSG_WAR(0X3F11, "Entering in PRE_OPERATIONAL mode ", 0);
initPreOperationalMode();
}
preOperational();
if (lastState == Initialisation)
slaveSendBootUp(0);
lastState = Pre_operational;
break;
case Operational:
if (lastState != getState()) {
IO_PORTS_8(PORTB) &= ~ 0x07; // leds 0, 1, 2 : ON
IO_PORTS_8(PORTB) |= 0x08; // leds 3 : OFF
MSG_WAR(0X3F12, "Entering in OPERATIONAL mode ", 0);
}
operational();
lastState = Operational;
break;
case Stopped:
if (lastState != getState()) {
IO_PORTS_8(PORTB) |= 0x0F; // leds 0, 1, 2, 3 : OFF
MSG_WAR(0X3F13, "Entering in STOPPED mode", 0);
}
stopped();
lastState = Stopped;
break;
}//end switch case
}
return (0);
}