Moved from ..
/*
This file is part of CanFestival, a library implementing CanOpen Stack.
Author: Christian Fortin (canfestival@canopencanada.ca)
See COPYING file for copyrights details.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <sys/time.h>
#include <signal.h>
#include <cyg/kernel/kapi.h>
#include <cyg/hal/hal_arch.h>
#include "applicfg.h"
#include <data.h>
#include <def.h>
#include <can.h>
#include <can_driver.h>
#include <objdictdef.h>
#include <objacces.h>
#include "lpc2138_pinout.h"
#include "lpc2138_defs.h"
#include "lpc2138.h"
#include "sja1000.h"
#include "time_slicer.h"
/*
SEND/RECEIVE
*/
CAN_HANDLE canOpen(s_BOARD *board)
{
return NULL;
}
/***************************************************************************/
int canClose(CAN_HANDLE fd0)
{
return 0;
}
UNS8 canReceive(CAN_HANDLE fd0, Message *m)
/*
Message *m :
typedef struct {
SHORT_CAN cob_id; // l'ID du mesg
UNS8 rtr; // remote transmission request. 0 if not rtr,
// 1 for a rtr message
UNS8 len; // message length (0 to 8)
UNS8 data[8]; // data
} Message;
Fill the structure "Message" with data from the CAN receive buffer
return : 0
*/
{
/*
the sja1000 must be set to the PeliCAN mode
*/
m->cob_id.w = sja1000_read(16) + (sja1000_read(17)<<8); // IO_PORTS_16(CAN0 + CANRCVID) >> 5
m->rtr = (sja1000_read(17) >> 4) & 0x01; // (IO_PORTS_8(CAN0 + CANRCVID + 1) >> 4) & 0x01;
m->len = sja1000_read(18);
m->data[0] = sja1000_read(19);
m->data[1] = sja1000_read(20);
m->data[2] = sja1000_read(21);
m->data[3] = sja1000_read(22);
m->data[4] = sja1000_read(23);
m->data[5] = sja1000_read(24);
m->data[6] = sja1000_read(25);
m->data[7] = sja1000_read(26);
sja1000_write(CMR, 1<<RRB ); // release fifo
return 0;
}
UNS8 canSend(CAN_HANDLE fd0, Message *m)
/*
Message *m :
typedef struct {
SHORT_CAN cob_id; // l'ID du mesg
UNS8 rtr; // remote transmission request. 0 if not rtr,
// 1 for a rtr message
UNS8 len; // message length (0 to 8)
UNS8 data[8]; // data
} Message;
Send the content of the structure "Message" to the CAN transmit buffer
return : 0 if OK, 1 if error
*/
{
unsigned char rec_buf;
do
{
rec_buf = sja1000_read(SR);
}
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high
sja1000_write(16, m->cob_id.w & 0xff);
sja1000_write(17, (m->cob_id.w >> 8) & 0xff);
sja1000_write(18, m->len);
sja1000_write(19, m->data[0]); // tx data 1
sja1000_write(20, m->data[1]); // tx data 2
sja1000_write(21, m->data[2]); // tx data 3
sja1000_write(22, m->data[3]); // tx data 4
sja1000_write(23, m->data[4]); // tx data 5
sja1000_write(24, m->data[5]); // tx data 6
sja1000_write(25, m->data[6]); // tx data 7
sja1000_write(26, m->data[7]); // tx data 8
sja1000_write(CMR,( (0<<SRR) | (0<<CDO) | (0<<RRB) | (0<<AT) | (1<<TR)));
do
{
rec_buf = sja1000_read(SR);
}
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high
return 0;
}
/*
SEQUENTIAL I/O TO FLASH
those functions are for continous writing and read
*/
int nvram_open(void)
{
return iat_init();
}
void nvram_close(void)
{
iat_end();
}
void nvram_set_pos(UNS32 pos)
/* set the current position in the NVRAM to pos */
{
}
void nvram_new_firmware()
{
/*
this function is called whenever a new firmware is about
to be written in the NVRAM
*/
data_addr = regs_page[1] + regs_page[4]*NVRAM_BLOCK_SIZE;
if (data_addr > NVRAM_MAX_SIZE)
data_addr = NVRAM_BLOCK_SIZE;
}
int _get_data_len(int type)
{
int len = 0; /* number of bytes */
switch(type)
{
case boolean:
len = 1;
break;
case int8:
case uint8:
len = 1;
break;
case int16:
case uint16:
len = 2;
break;
case int24:
case uint24:
len = 3;
break;
case int32:
case uint32:
case real32:
len = 4;
break;
case int40:
case uint40:
len = 5;
break;
case int48:
case uint48:
len = 6;
break;
case int56:
case uint56:
len = 7;
break;
case int64:
case uint64:
case real64:
len = 8;
break;
#if 0
/* TO DO */
case visible_string:
case octet_string:
case unicode_string:
case time_of_day:
case time_difference:
#endif
}
return len;
}
char nvram_write_data(int type, int access_attr, void *data)
/* return 0 if successfull */
{
int len = _get_data_len(type);
if (data_len+len > NVRAM_BLOCK_SIZE)
{
iat_flash_write_page(data_addr);
data_len = 0;
data_addr += NVRAM_BLOCK_SIZE;
/* wrap-around address pointer */
if (data_addr > NVRAM_MAX_SIZE)
data_addr = NVRAM_BLOCK_SIZE;
data_num_pages++;
}
memcpy(((char *)data_page)+data_len, data, len);
data_len += len;
return 0;
}
char nvram_read_data(int type, int access_attr, void *data)
/* return 0 if successful */
{
int len = _get_data_len(type);
if (data_len+len > NVRAM_BLOCK_SIZE)
{
data_addr += NVRAM_BLOCK_SIZE;
/* wrap-around address pointer */
if (data_addr > NVRAM_MAX_SIZE)
data_addr = NVRAM_BLOCK_SIZE;
iat_flash_read_page(data_addr);
data_len = 0;
}
memcpy(data, ((char *)data_page)+data_len, len);
data_len += len;
return 0;
}
/*
NVRAM registers at block 0
pos description
0 version of the current dictionnary
1 starting address for data block
2 date of last writing
3 address of the previous dictionnary
4 size in pages of the current dict
*/
void nvram_write_reg(UNS32 reg, UNS16 pos)
/* write reg at the position in the data block 0 */
{
regs_page[pos] = reg;
}
UNS32 nvram_read_reg(UNS16 pos)
/* read reg at the position in the data block 0 */
{
return regs_page[pos];
}
/*
LED
*/
void led_set_redgreen(UNS8 bits)
/* bits : each bit of this uns8 is assigned a led
0=off, 1=on
*/
{
lpc2138_redgreenled_set(bits);
}