Master now sends NMT_Reset only from default preOperational application callback
/*
This file is part of CanFestival, a library implementing CanOpen Stack.
Copyright (C): Jaroslav Fojtik
*/
#if defined(WIN32) && !defined(__CYGWIN__)
#define usleep(micro) Sleep(micro%1000 ? (micro/1000) + 1 : (micro/1000))
#else
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#endif
#include "cancfg.h"
#include "can_driver.h"
#include "def.h"
UNS8 LIBAPI canSend_driver(CAN_HANDLE fd0, Message const *m);
#define VERSION_2
/* dummy implementation for older version. */
#ifndef VERSION_2
void CAN_SetRcvEvent(HANDLE hEventx)
{
SetEvent(hEventx);
}
#endif
#define SLAVE_COUNT 10
#define QueueSize 100
#ifndef extra_PCAN_init_params
#define extra_PCAN_init_params /**/
#else
long int print_getenv(const char* pcanparam)
{
char* param=NULL;
long int res=0;
param = getenv(pcanparam);
if(param != NULL){
res = strtol(param,NULL,0);
}
else
printf("Environment variable %s not defined !\n", pcanparam);
printf("Found environment variable %s : %ld\n", pcanparam ,res);
return res;
}
#define extra_PCAN_init_params\
,print_getenv("PCANHwType")\
,print_getenv("PCANIO_Port")\
,print_getenv("PCANInterupt")
#endif
typedef struct
{
s_BOARD *board;
Message MQueue[QueueSize];
unsigned QStart, QEnd;
HANDLE hEventx;
} QueueRecord;
int initialisedQ = 0;
QueueRecord Q_DATA[10];
/** Store message into a queue. */
static void PushMsgToQueue(QueueRecord *QR, Message *m)
{
if(QR==NULL || m==NULL) return;
if(QR->board==NULL) return; // No Board assigned yet
memcpy(&QR->MQueue[QR->QStart], m, sizeof(Message));
QR->QStart = (QR->QStart + 1) % QueueSize;
if(QR->QEnd==QR->QStart) QR->QEnd = (QR->QEnd+1) % QueueSize;
if(QR->hEventx) SetEvent(QR->hEventx); // Signalise internal flag
}
/** Get message from a queue. */
static int PopMsgFromQueue(QueueRecord *QR, Message *m)
{
if(QR==NULL || m==NULL) return 0;
if(QR->QEnd == QR->QStart) return 0;
memcpy(m, &QR->MQueue[QR->QEnd], sizeof(Message));
QR->QEnd = (QR->QEnd+1) % QueueSize;
return 1;
}
/** Create the Event for the first board */
HANDLE hEvent1 = NULL;
CRITICAL_SECTION InitLock;
// Define for rtr CAN message
#define CAN_INIT_TYPE_ST_RTR MSGTYPE_STANDARD | MSGTYPE_RTR
/***************************************************************************/
static int TranslateBaudeRate(char* optarg)
{
if(!strcmp( optarg, "1M")) return CAN_BAUD_1M;
if(!strcmp( optarg, "500K")) return CAN_BAUD_500K;
if(!strcmp( optarg, "250K")) return CAN_BAUD_250K;
if(!strcmp( optarg, "125K")) return CAN_BAUD_125K;
if(!strcmp( optarg, "100K")) return CAN_BAUD_100K;
if(!strcmp( optarg, "50K")) return CAN_BAUD_50K;
if(!strcmp( optarg, "20K")) return CAN_BAUD_20K;
if(!strcmp( optarg, "10K")) return CAN_BAUD_10K;
if(!strcmp( optarg, "5K")) return CAN_BAUD_5K;
if(!strcmp( optarg, "none")) return 0;
return 0x0000;
}
static UNS8 canInit(s_BOARD *board)
{
int baudrate;
int ret = 0;
if(hEvent1==NULL)
{ //Create the Event for the first board
hEvent1 = CreateEvent(NULL, // lpEventAttributes
FALSE, // bManualReset
FALSE, // bInitialState
""); // lpName
InitializeCriticalSection(&InitLock);
}
EnterCriticalSection(&InitLock);
if(baudrate = TranslateBaudeRate(board->baudrate))
{
ret = CAN_Init(baudrate, CAN_INIT_TYPE_ST extra_PCAN_init_params);
if(ret != CAN_ERR_OK)
{
LeaveCriticalSection(&InitLock);
return 0;
}
}
CAN_SetRcvEvent(hEvent1); //Set Event Handler for CANReadExt
LeaveCriticalSection(&InitLock);
return 1;
}
/********* functions which permit to communicate with the board ****************/
UNS8 LIBAPI canReceive_driver(CAN_HANDLE fd0, Message *m)
{
static int HeavyCounter = 0;
int ret=0;
UNS8 data;
TPCANMsg peakMsg;
DWORD Res;
DWORD result;
HANDLE hh[2];
int i;
#ifdef CAN_READ_EX
TPCANTimestamp peakRcvTime;
#endif
i = strtol(((s_BOARD *)fd0)->busname,NULL,0);
if(i>=SLAVE_COUNT || i<0) return 1; // error
if(Q_DATA[i].board!=(s_BOARD *)fd0) return 1; // error
hh[0]=hEvent1; hh[1]=Q_DATA[i].hEventx;
// loop until valid message or fatal error
do
{
CONTINUE:
if(PopMsgFromQueue(&Q_DATA[i],m)) return 0; //message is waiting in the internal queue
// We read the queue looking for messages.
#ifdef VERSION_2
result = WaitForMultipleObjects(2,hh,FALSE,15);
if(Q_DATA[i].board==NULL) return 1; //exit hook, exit immediatelly when device is closed
if(result == WAIT_OBJECT_0+1)
goto CONTINUE; //look to a PopMsgFromQueue() (continue will check while(), goto skips it)
if(result==WAIT_OBJECT_0 || result==WAIT_TIMEOUT)
{
#endif
#ifdef CAN_READ_EX
Res = CAN_ReadEx(&peakMsg, &peakRcvTime);
#else
Res = CAN_Read(&peakMsg);
#endif
// Exit receive thread when handle is no more valid
#ifdef CAN_ERRMASK_ILLHANDLE
if(Res & CAN_ERRMASK_ILLHANDLE) return 1;
#else
if(Res & CAN_ERR_ILLHANDLE) return 1;
#endif
#ifndef VERSION_2
if(Res != CAN_ERR_OK)
result = WaitForSingleObject(hEvent1, 1); //pooling for pcan release<2
#endif
if(Res==CAN_ERR_QRCVEMPTY) goto CONTINUE;
#ifdef VERSION_2
}
else
{
//if(result==WAIT_TIMEOUT || result==(WAIT_OBJECT_0+1))
// Res = CAN_ERR_BUSLIGHT;
//else
Res = CAN_ERR_UNKNOWN;
}
#endif
if(Res==CAN_ERR_BUSHEAVY)
{
if(HeavyCounter++>10)
{
HeavyCounter = 0;
Res=CAN_ERR_BUSOFF;
}
}
if(Res & CAN_ERR_BUSOFF)
{
peakMsg.MSGTYPE = MSGTYPE_STATUS;
peakMsg.DATA[3] = CAN_ERR_BUSOFF;
Res = CAN_ERR_OK;
}
// A message was received : we process the message(s)
if(Res == CAN_ERR_OK)
{
// if something different that 11bit or rtr... problem
switch(peakMsg.MSGTYPE)
{
case MSGTYPE_STATUS:
switch(peakMsg.DATA[3])
{
case CAN_ERR_BUSHEAVY:
break;
case CAN_ERR_BUSOFF:
printf ("Peak board read BUSOFF: re-init!!!\n");
canInit((s_BOARD*)fd0);
usleep(2000);
break;
}
return peakMsg.DATA[3]; /* if something different that 11bit or rtr... problem */
case MSGTYPE_STANDARD: /* bits of MSGTYPE_ */
case MSGTYPE_EXTENDED:
m->rtr = 0;
break;
case MSGTYPE_RTR: /* bits of MSGTYPE_ */
m->rtr = 1;
break;
default: return CAN_ERR_OVERRUN; /* If status, return status if 29bit, return overrun. */
}
m->cob_id = peakMsg.ID;
if (peakMsg.MSGTYPE == CAN_INIT_TYPE_ST) /* bits of MSGTYPE_ */
m->rtr = 0;
else
m->rtr = 1;
m->len = peakMsg.LEN; /* count of data bytes (0..8) */
for(data=0; data<peakMsg.LEN; data++)
m->Data[data] = peakMsg.DATA[data]; /* data bytes, up to 8 */
#if defined DEBUG_MSG_CONSOLE_ON
MSG("in : ");
print_message(m);
#endif
}
else
{ // not benign error => fatal error
if(!(Res & CAN_ERR_QRCVEMPTY
|| Res & CAN_ERR_BUSLIGHT
|| Res & CAN_ERR_BUSHEAVY))
{
printf ("canReceive returned error (%d)\n", Res);
return 1;
}
}
} while(Res != CAN_ERR_OK);
// populate message received to other drivers
for(i=0; i<SLAVE_COUNT; i++)
{
if(Q_DATA[i].board != (s_BOARD *)fd0) // do not populate to own queue
{
PushMsgToQueue(&Q_DATA[i],m);
}
}
return 0;
}
/***************************************************************************/
UNS8 LIBAPI canSend_driver(CAN_HANDLE fd0, Message const *m)
{
UNS8 data;
TPCANMsg peakMsg;
int i, j;
int loc_errno;
int MaxLoops = 100;
i = -1;
for(j=0; j<SLAVE_COUNT; j++)
{
if(Q_DATA[j].board != (s_BOARD *)fd0) // store this message forr all other drivers
{
PushMsgToQueue(&Q_DATA[j],m);
i = j;
}
}
if(i<0) return 1; // no board found
peakMsg.ID = m->cob_id; /* 11/29 bit code */
if(m->rtr == 0)
{
if(peakMsg.ID > 0x7FF)
peakMsg.MSGTYPE = MSGTYPE_EXTENDED; /* bits of MSGTYPE_ */
else
peakMsg.MSGTYPE = MSGTYPE_STANDARD; /* bits of MSGTYPE_ */
}
else
peakMsg.MSGTYPE = MSGTYPE_RTR; /* bits of MSGTYPE_ */
peakMsg.LEN = m->len;
/* count of data bytes (0..8) */
for(data = 0; data < m->len; data++)
peakMsg.DATA[data] = m->Data[data]; /* data bytes, up to 8 */
do
{
errno = loc_errno = CAN_Write(&peakMsg);
if(loc_errno)
{
if(loc_errno==CAN_ERR_BUSOFF && (MaxLoops%20)==1)
{
#if defined DEBUG_MSG_CONSOLE_ON
printf ("Peak board write: re-init!!!\n");
#endif
canInit((s_BOARD*)fd0);
usleep(1000);
}
usleep(80);
}
if(MaxLoops-- == 0) break; // limit max looping
} while(loc_errno != CAN_ERR_OK);
#if defined DEBUG_MSG_CONSOLE_ON
MSG("out : ");
print_message(m);
#endif
return 0;
}
/***************************************************************************/
UNS8 LIBAPI canChangeBaudRate_driver(CAN_HANDLE fd, char* baud)
{
printf("canChangeBaudRate not yet supported by this driver\n");
return 0;
}
/***************************************************************************/
LIBPUBLIC CAN_HANDLE LIBAPI canOpen_driver(s_BOARD * board)
{
int ret;
int i;
if(!initialisedQ)
{
memset(Q_DATA,0,sizeof(Q_DATA));
initialisedQ = 1;
}
i = strtol(board->busname,NULL,0); // Get slot name
//printf ("Board Busname=%d.\n",strtol(board->busname, &pEnd,0));
if(i<SLAVE_COUNT && i>=0)
{
Q_DATA[i].board = board;
//printf ("First Board selected\n");
if(Q_DATA[i].hEventx==NULL) // Create local event
{
Q_DATA[i].hEventx = CreateEvent(NULL, FALSE, FALSE, "");
}
if(hEvent1!=NULL) return (CAN_HANDLE)board; // Create global event, if needed
ret = canInit(board);
if(ret)
return (CAN_HANDLE)board;
}
return NULL;
}
/***************************************************************************/
int LIBAPI canClose_driver(CAN_HANDLE fd0)
{
s_BOARD *x_board = NULL;
int ActiveBoards = 0;
int i;
if((s_BOARD *)fd0==NULL) return 0;
for(i=0; i<SLAVE_COUNT; i++)
{
if(Q_DATA[i].board == (s_BOARD *)fd0)
{
x_board = Q_DATA[i].board;
Q_DATA[i].board = NULL;
CloseHandle(Q_DATA[i].hEventx);
Q_DATA[i].hEventx = NULL;
}
else
ActiveBoards++;
}
if(ActiveBoards<=0)
{ // No can device is used.
CAN_SetRcvEvent(NULL);
CAN_Close();
if(hEvent1)
{
SetEvent(hEvent1);
CloseHandle(hEvent1);
hEvent1 = NULL;
}
}
else
SetEvent(hEvent1);
return 0;
}