getReadResultNetworkDict now returns abortcode. Now, abort message should be sent correctly from client.
/*
This file is part of CanFestival, a library implementing CanOpen Stack.
Copyright (C): Edouard TISSERANT and Francis DUPIN
AVR Port: Andreas GLAUSER and Peter CHRISTEN
See COPYING file for copyrights details.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/******************************************************************************
Project description:
Test projekt for a DS 401 slave, running on Atmel's STK500 with AT90CAN128
Short description:
PORTA: Inputs (Keys, low active)
PORTB: Outputs (LEDs, low active)
PORTC: Node ID (1 BCD switch)
******************************************************************************/
#include "hardware.h"
#include "canfestival.h"
#include "can_AVR.h"
#include "objdict.h"
#include "ds401.h"
unsigned char timer_interrupt = 0; // Set if timer interrupt eclapsed
unsigned char inputs;
// CAN
unsigned char nodeID;
unsigned char digital_input[1] = {0};
unsigned char digital_output[1] = {0};
static Message m = Message_Initializer; // contain a CAN message
void sys_init();
// macros to handle the schedule timer
#define sys_timer timer_interrupt
#define reset_sys_timer() timer_interrupt = 0
#define CYCLE_TIME 1000 // Sample Timebase [us]
int main(void)
{
sys_init(); // Initialize system
canInit(CAN_BAUDRATE); // Initialize the CANopen bus
initTimer(); // Start timer for the CANopen stack
nodeID = read_bcd(); // Read node ID first
setNodeId (&ObjDict_Data, nodeID);
setState(&ObjDict_Data, Initialisation); // Init the state
for(;;) // forever loop
{
if (sys_timer) // Cycle timer, invoke action on every time slice
{
reset_sys_timer(); // Reset timer
digital_input[0] = get_inputs();
digital_input_handler(&ObjDict_Data, digital_input, sizeof(digital_input));
digital_output_handler(&ObjDict_Data, digital_output, sizeof(digital_output));
set_outputs(digital_output[0]);
// Check if CAN address has been changed
if(!( nodeID == read_bcd()))
{
nodeID = read_bcd(); // Save the new CAN adress
setState(&ObjDict_Data, Stopped); // Stop the node, to change the node ID
setNodeId(&ObjDict_Data, nodeID); // Now the CAN adress is changed
setState(&ObjDict_Data, Pre_operational); // Set to Pre_operational, master must boot it again
}
}
// a message was received pass it to the CANstack
if (canReceive(&m)) // a message reveived
canDispatch(&ObjDict_Data, &m); // process it
else
{
// Enter sleep mode
#ifdef WD_SLEEP // Watchdog and Sleep
wdt_reset();
sleep_enable();
sleep_cpu();
#endif // Watchdog and Sleep
}
}
}
void sys_init()
/******************************************************************************
Initialize the relays, the main states and the modbus protocol stack.
INPUT LOCK_STATES *lock_states
OUTPUT void
******************************************************************************/
{
OSCCAL = 0x43;
PORTA = 0xFF; // Inputs (Keys, low active) with pullup
DDRA = 0x00; //
PORTB = 0xFF; // Outputs (LEDs, low active) all 1
DDRB = 0xFF; //
PORTC = 0xFF; // 1 BCD switch with pullup
DDRC = 0x00; //
PORTD = 0x2C; // 2xCOM, unused, CAN, unused
DDRD = 0x2A; // All init 0 or without pullup
PORTE = 0x00; // Output
DDRE = 0x3C; // 2x not used, 2x not used
PORTF = 0x00; // Not used
DDRF = 0xFF; // All output
PORTG = 0x00; // Not used
DDRG = 0x1F; // Output for debug (only 5 pins)
// Set timer 0 for main schedule time
TCCR0A |= 1 << WGM01 | 1 << CS01 | 1 << CS00;// Timer 0 CTC , Timer 0 mit CK/64 starten
TIMSK0 = 1 << OCIE0A; // Timer Interrupts: Timer 0 Compare
OCR0A = (unsigned char)(F_CPU / 64 * CYCLE_TIME/1000000 - 1); // Reloadvalue for timer 0
#ifdef WD_SLEEP // Watchdog and Sleep
wdt_reset();
wdt_enable(WDTO_15MS); // Watchdogtimer start with 16 ms timeout
#endif // Watchdog and Sleep
sei(); // Enable Interrupts
}
#ifdef __IAR_SYSTEMS_ICC__
#pragma type_attribute = __interrupt
#pragma vector=TIMER0_COMP_vect
void TIMER0_COMP_interrupt(void)
#else // GCC
ISR(TIMER0_COMP_vect)
#endif // GCC
/******************************************************************************
Interruptserviceroutine Timer 2 Compare A for the main cycle
******************************************************************************/
{
timer_interrupt = 1; // Set flag
}