1 /* |
|
2 This file is part of CanFestival, a library implementing CanOpen Stack. |
|
3 |
|
4 Author: Christian Fortin (canfestival@canopencanada.ca) |
|
5 |
|
6 See COPYING file for copyrights details. |
|
7 |
|
8 This library is free software; you can redistribute it and/or |
|
9 modify it under the terms of the GNU Lesser General Public |
|
10 License as published by the Free Software Foundation; either |
|
11 version 2.1 of the License, or (at your option) any later version. |
|
12 |
|
13 This library is distributed in the hope that it will be useful, |
|
14 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
16 Lesser General Public License for more details. |
|
17 |
|
18 You should have received a copy of the GNU Lesser General Public |
|
19 License along with this library; if not, write to the Free Software |
|
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
21 */ |
|
22 |
|
23 #include <stdlib.h> |
|
24 |
|
25 #include <sys/time.h> |
|
26 #include <signal.h> |
|
27 |
|
28 #include <cyg/kernel/kapi.h> |
|
29 #include <cyg/hal/hal_arch.h> |
|
30 |
|
31 #include "applicfg.h" |
|
32 #include <data.h> |
|
33 #include <def.h> |
|
34 #include <can.h> |
|
35 #include <can_driver.h> |
|
36 #include <objdictdef.h> |
|
37 #include <objacces.h> |
|
38 |
|
39 #include "lpc2138_pinout.h" |
|
40 #include "lpc2138_defs.h" |
|
41 #include "lpc2138.h" |
|
42 |
|
43 #include "sja1000.h" |
|
44 |
|
45 #include "time_slicer.h" |
|
46 |
|
47 |
|
48 /* |
|
49 SEND/RECEIVE |
|
50 */ |
|
51 CAN_HANDLE canOpen(s_BOARD *board) |
|
52 { |
|
53 return NULL; |
|
54 } |
|
55 |
|
56 /***************************************************************************/ |
|
57 int canClose(CAN_HANDLE fd0) |
|
58 { |
|
59 return 0; |
|
60 } |
|
61 |
|
62 UNS8 canReceive(CAN_HANDLE fd0, Message *m) |
|
63 /* |
|
64 Message *m : |
|
65 typedef struct { |
|
66 SHORT_CAN cob_id; // l'ID du mesg |
|
67 UNS8 rtr; // remote transmission request. 0 if not rtr, |
|
68 // 1 for a rtr message |
|
69 UNS8 len; // message length (0 to 8) |
|
70 UNS8 data[8]; // data |
|
71 } Message; |
|
72 |
|
73 Fill the structure "Message" with data from the CAN receive buffer |
|
74 |
|
75 return : 0 |
|
76 */ |
|
77 { |
|
78 /* |
|
79 the sja1000 must be set to the PeliCAN mode |
|
80 */ |
|
81 m->cob_id.w = sja1000_read(16) + (sja1000_read(17)<<8); // IO_PORTS_16(CAN0 + CANRCVID) >> 5 |
|
82 |
|
83 m->rtr = (sja1000_read(17) >> 4) & 0x01; // (IO_PORTS_8(CAN0 + CANRCVID + 1) >> 4) & 0x01; |
|
84 |
|
85 m->len = sja1000_read(18); |
|
86 |
|
87 m->data[0] = sja1000_read(19); |
|
88 m->data[1] = sja1000_read(20); |
|
89 m->data[2] = sja1000_read(21); |
|
90 m->data[3] = sja1000_read(22); |
|
91 m->data[4] = sja1000_read(23); |
|
92 m->data[5] = sja1000_read(24); |
|
93 m->data[6] = sja1000_read(25); |
|
94 m->data[7] = sja1000_read(26); |
|
95 |
|
96 sja1000_write(CMR, 1<<RRB ); // release fifo |
|
97 |
|
98 return 0; |
|
99 } |
|
100 |
|
101 |
|
102 UNS8 canSend(CAN_HANDLE fd0, Message *m) |
|
103 /* |
|
104 Message *m : |
|
105 typedef struct { |
|
106 SHORT_CAN cob_id; // l'ID du mesg |
|
107 UNS8 rtr; // remote transmission request. 0 if not rtr, |
|
108 // 1 for a rtr message |
|
109 UNS8 len; // message length (0 to 8) |
|
110 UNS8 data[8]; // data |
|
111 } Message; |
|
112 |
|
113 Send the content of the structure "Message" to the CAN transmit buffer |
|
114 |
|
115 return : 0 if OK, 1 if error |
|
116 */ |
|
117 { |
|
118 unsigned char rec_buf; |
|
119 |
|
120 do |
|
121 { |
|
122 rec_buf = sja1000_read(SR); |
|
123 } |
|
124 while ( (rec_buf & (1<<TBS))==0); // loop until TBS high |
|
125 |
|
126 sja1000_write(16, m->cob_id.w & 0xff); |
|
127 sja1000_write(17, (m->cob_id.w >> 8) & 0xff); |
|
128 sja1000_write(18, m->len); |
|
129 |
|
130 sja1000_write(19, m->data[0]); // tx data 1 |
|
131 sja1000_write(20, m->data[1]); // tx data 2 |
|
132 sja1000_write(21, m->data[2]); // tx data 3 |
|
133 sja1000_write(22, m->data[3]); // tx data 4 |
|
134 sja1000_write(23, m->data[4]); // tx data 5 |
|
135 sja1000_write(24, m->data[5]); // tx data 6 |
|
136 sja1000_write(25, m->data[6]); // tx data 7 |
|
137 sja1000_write(26, m->data[7]); // tx data 8 |
|
138 |
|
139 sja1000_write(CMR,( (0<<SRR) | (0<<CDO) | (0<<RRB) | (0<<AT) | (1<<TR))); |
|
140 do |
|
141 { |
|
142 rec_buf = sja1000_read(SR); |
|
143 } |
|
144 while ( (rec_buf & (1<<TBS))==0); // loop until TBS high |
|
145 |
|
146 return 0; |
|
147 } |
|
148 |
|
149 |
|
150 /* |
|
151 SEQUENTIAL I/O TO FLASH |
|
152 those functions are for continous writing and read |
|
153 */ |
|
154 |
|
155 |
|
156 int nvram_open(void) |
|
157 { |
|
158 return iat_init(); |
|
159 } |
|
160 |
|
161 |
|
162 void nvram_close(void) |
|
163 { |
|
164 iat_end(); |
|
165 } |
|
166 |
|
167 |
|
168 void nvram_set_pos(UNS32 pos) |
|
169 /* set the current position in the NVRAM to pos */ |
|
170 { |
|
171 } |
|
172 |
|
173 |
|
174 void nvram_new_firmware() |
|
175 { |
|
176 /* |
|
177 this function is called whenever a new firmware is about |
|
178 to be written in the NVRAM |
|
179 */ |
|
180 data_addr = regs_page[1] + regs_page[4]*NVRAM_BLOCK_SIZE; |
|
181 if (data_addr > NVRAM_MAX_SIZE) |
|
182 data_addr = NVRAM_BLOCK_SIZE; |
|
183 } |
|
184 |
|
185 int _get_data_len(int type) |
|
186 { |
|
187 int len = 0; /* number of bytes */ |
|
188 switch(type) |
|
189 { |
|
190 case boolean: |
|
191 len = 1; |
|
192 break; |
|
193 |
|
194 case int8: |
|
195 case uint8: |
|
196 len = 1; |
|
197 break; |
|
198 case int16: |
|
199 case uint16: |
|
200 len = 2; |
|
201 break; |
|
202 case int24: |
|
203 case uint24: |
|
204 len = 3; |
|
205 break; |
|
206 case int32: |
|
207 case uint32: |
|
208 case real32: |
|
209 len = 4; |
|
210 break; |
|
211 case int40: |
|
212 case uint40: |
|
213 len = 5; |
|
214 break; |
|
215 case int48: |
|
216 case uint48: |
|
217 len = 6; |
|
218 break; |
|
219 case int56: |
|
220 case uint56: |
|
221 len = 7; |
|
222 break; |
|
223 case int64: |
|
224 case uint64: |
|
225 case real64: |
|
226 len = 8; |
|
227 break; |
|
228 #if 0 |
|
229 /* TO DO */ |
|
230 case visible_string: |
|
231 case octet_string: |
|
232 case unicode_string: |
|
233 case time_of_day: |
|
234 case time_difference: |
|
235 #endif |
|
236 } |
|
237 |
|
238 return len; |
|
239 } |
|
240 |
|
241 |
|
242 char nvram_write_data(int type, int access_attr, void *data) |
|
243 /* return 0 if successfull */ |
|
244 { |
|
245 int len = _get_data_len(type); |
|
246 |
|
247 if (data_len+len > NVRAM_BLOCK_SIZE) |
|
248 { |
|
249 iat_flash_write_page(data_addr); |
|
250 data_len = 0; |
|
251 data_addr += NVRAM_BLOCK_SIZE; |
|
252 |
|
253 /* wrap-around address pointer */ |
|
254 if (data_addr > NVRAM_MAX_SIZE) |
|
255 data_addr = NVRAM_BLOCK_SIZE; |
|
256 |
|
257 data_num_pages++; |
|
258 } |
|
259 |
|
260 memcpy(((char *)data_page)+data_len, data, len); |
|
261 |
|
262 data_len += len; |
|
263 |
|
264 return 0; |
|
265 } |
|
266 |
|
267 |
|
268 char nvram_read_data(int type, int access_attr, void *data) |
|
269 /* return 0 if successful */ |
|
270 { |
|
271 int len = _get_data_len(type); |
|
272 |
|
273 if (data_len+len > NVRAM_BLOCK_SIZE) |
|
274 { |
|
275 data_addr += NVRAM_BLOCK_SIZE; |
|
276 |
|
277 /* wrap-around address pointer */ |
|
278 if (data_addr > NVRAM_MAX_SIZE) |
|
279 data_addr = NVRAM_BLOCK_SIZE; |
|
280 |
|
281 iat_flash_read_page(data_addr); |
|
282 data_len = 0; |
|
283 } |
|
284 |
|
285 memcpy(data, ((char *)data_page)+data_len, len); |
|
286 |
|
287 data_len += len; |
|
288 |
|
289 return 0; |
|
290 } |
|
291 |
|
292 /* |
|
293 NVRAM registers at block 0 |
|
294 pos description |
|
295 0 version of the current dictionnary |
|
296 1 starting address for data block |
|
297 2 date of last writing |
|
298 3 address of the previous dictionnary |
|
299 4 size in pages of the current dict |
|
300 */ |
|
301 void nvram_write_reg(UNS32 reg, UNS16 pos) |
|
302 /* write reg at the position in the data block 0 */ |
|
303 { |
|
304 regs_page[pos] = reg; |
|
305 } |
|
306 |
|
307 UNS32 nvram_read_reg(UNS16 pos) |
|
308 /* read reg at the position in the data block 0 */ |
|
309 { |
|
310 return regs_page[pos]; |
|
311 } |
|
312 |
|
313 |
|
314 /* |
|
315 LED |
|
316 */ |
|
317 |
|
318 void led_set_redgreen(UNS8 bits) |
|
319 /* bits : each bit of this uns8 is assigned a led |
|
320 0=off, 1=on |
|
321 */ |
|
322 { |
|
323 lpc2138_redgreenled_set(bits); |
|
324 } |
|
325 |
|