© CAN in Automatione. V.

Application Layer and Communication Profile

CiA Draft Standard 301

Version 4.02
Date: 13 February 2002

HISTORY

CANopen

CiA

HISTORY

Date Changes

June 1999 Document completely revised;

Summary of major changes:

June 2000 o

February 2002 .

Object Dictionary structure reviewed

Object services and NMT services included (former in CiA DS-201 .. CiA DS-207
specified)

Data type definitions included (former in CiA DS-201 .. CiA DS-207 specified) and
extended

Boot Up Message specified
Optional Heartbeat specified
Additional Emergency error codes specified
Additional SDO abort codes specified
Timer-driven PDO transmission specified
PDO Communication parameter enhanced
PDO Mapping procedure clarified
SDO Block transfer specified
Pre-defined Identifier set extended
correction of some typing errors
clarification of some descriptions
Appendix:
. Device configuration
. OS command and prompt
. Multiplexed PDOs
. Modular CANopen devices
. Error behaviour
errata sheet included
chapter '11.6.2. Error behaviour object' — wrong reference changed

default value changed from 'No' to '(device profile dependent)' for inhibit time and
event timer at definition of TPDO

chapter '9.4.4. Restricted COB-Ids' added

default value changed from 'No' to 'disabled' for COB-ID Client -> Server and COB-
ID Server -> Client at definition of Server SDO Parameter for Index 1201h — 127Fh

default value changed from 'No' to 'disabled' for COB-ID Client -> Server and COB-
ID Server -> Client at definition of Client SDO Parameter

'All client SDOs are invalid by default (invalid bit — see ...)' added
'A000h — BFFFh — Standardised Interface Profile Area' added at table 1
figure 49 changed — structure of the Initialisation state.

annex A edited

General information on licensing and patents
CAN in AUTOMATION (CiA) calls attention to the possibility that some of the elements of this CiA specification may be subject
of patent rights. CiA shall not be responsible for identifying any or all such patent rights.

© CiA 2005-01-01

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in writing from CiA at the address

below.

CAN in Automation e. V.
Am Weichselgarten 26

DE - 91058 Erlangen, Germany

Tel.: +49-9131-69086-0
Fax: +49-9131-69086-79
Url: www.can-cia.org

Email: headquarters@can-cia.org

CONTENTS CANopen CiA

1 LI 2 = 10 6
2 FIGURES oo e s s s e s e s sme s s e s e s e e e an e s e e s meeesnn e s nne s snnnnens 8
3 T 00 1 10
4 REFERENCES ...t ss s s e s sss s s s s smn s s an s s s snn s s san s s e e s snnnnnn 11
4.1 NOIMALIVE FEfEIENCESvee e nee e e 11
4.2 INfOrmMative refErENCES......cccvei e 11

5 DEFINITIONS AND ABBREVIATIONS.........ccoiirrcirrcr s s sses s sssse s ssmnennns 12
51 Y o] o) (=37 =1 1o o - 3RS 12

6 10 1] 3 0 14
6.1 =) L= =] oY/ o 1= 14
6.2 =Y Tot Y 1V o T Y SR 15
6.2.1 L T= T - | SRS 15

6.2.2 The ObJect DICHONAIYccceeiieiie e 16

6.3 Communication MOAEL.........cceiiiiie e e 17
6.3.1 Master/Slave relationShipcccoociiiee e 18

6.3.2 Client/Server relationShipcceve e 19

6.3.3 Producer/Consumer relationship - Pull/Push modelcccoeeveiiencnnennnn. 19

7 [o 5] (0N I I N] T 20
71 L= 1 ES 10T AT SRS 20
7.2 Bit rates and timingoceooiiiiii e 20

8 DATA LINK LAYER.. ... e sss s s s sms s s s e s me s e s s e e s smnsnmnennns 22
8.1 CAN Frame TYPE....eeiuieiieeitie ittt ettt et ettt s e b e nneenaeenneas 22

9 APPLICATION LAYER......oiicciiicrrrcinssmessssssssessssesssss s s s e s sms s smsessssesesmesasmssssasassnssnsns 23
9.1 Data Types and Encoding RUIEScooiiiiiiiiiiii e 23
9.1.1 General Description of Data Types and Encoding Rulescccceveenne 23

9.1.2 Data Type DefinitioNscceoiiiiiiiiiiieiieeeee e 23

9.1.3 o T A T=Y o [=] o7 S 24

CONTENTS CANopen CiA
9.1.4 BasiC Dat@ TYPES.....ueiiiuiieiiieitee et e s 25
9.1.5 Compound Data TYPES....cciceieiiieiiee e eeeeee e see e e eee e seee e snte e seeeensee e 28
9.1.6 Extended Data TYPEScooiuiiiiiiieieeee e 28

9.2 Communication ODBJECEScoiiiiiiiiiiiee s 29
9.2.1 Process Data ObjJeCt (PDO)cccuiiiiiiiiiiiiieie et 29
9.2.2 Service Data Object (SDO)coiuiiiiiiieieeieeee e e 33
9.2.3 Synchronisation Object (SYNC)........cooiiiiiiiiii e 58
9.24 Time Stamp ObjJeCt (TIME).......ccoiiiiieiie e 59
9.2.5 Emergency Object (EMCY)oiiiiiiiiiiiie e 60
9.2.6 Network Management ODbjJectS.........cccoiiiiiiiiiin i 63

9.3 Synchronisation of the SYNC CONSUMETccooiiiiiiiiiiieieeee e 71
9.3.1 Transmission of Synchronous PDO MeSSages........cccovveieereenieneeneesie e 71
9.3.2 Optional High Resolution Synchronisation Protocol.............ccccceveniiniinenene 72

9.4 Network Initialisation and System Boot-Upccoiiiiiiiiiiiieeeeeeeeeeeie 74
9.4.1 Initialisation ProCedure ..o 74
9.4.2 NMT State Machinecooeiiiiiiiii s 74
9.4.3 Pre-Defined Connection Sef.........ccccoiiiiiiiiiiieeeeeee e 77

9.5 ODBJECE DICHONAIYeeiieitiiitie ettt b e sa e sneenneas 79
9.5.1 General Structure of the Object Dictionary...........ccoccveeeeieeneneneceee e 79
9.5.2 Dictionary COMPONENTScciiiiiiiiiiiirie e 80
9.5.3 Data Type Entry Specificationcccoiiiiiiiiiieeeeeeeeee e 80
9.54 Specification of Predefined Complex Data Types.......ccccoevvvevvevcieeiieescieeenee 82

9.6 Communication Profile Specificationccccccvviiiiii i 84
9.6.1 Detailed Object Specificationcocviiiiiiiiieeeeee e 84
9.6.2 Overview Object Dictionary Entries for Communicationccccceeeeneenenne 84
9.6.3 Detailed Specification of Communication Profile specific Objects 86

10 IMPLEMENTATION RECOMMENDATIONS........ccoooierrmrnrersmsss s sessms s ssessms e 114

11 ANNEX A (NORMATIVE).....cccciioeereertreneensesessssssesessssssssesssssssnssssssssssssssessssssssnsanes 115

111 Additional object dictionary entriesccccociiiiiinii 116

11.2 Device CONfIGUIAtioNcieiiiiiiiiie e 117
11.2.1 Boot-up configuration ProCESScoiceeiiiviiii e 117

CONTENTS CANopen

CiA

12

11.2.2 EDS STOrAQE ...cctietieitieiiie ittt sttt sttt sttt st e s teennesneeenneens 118
11.3 OS command and ProMPLoeicirerie e e e e e sneeesneeean 120
11.3.1 OS COMMENG ...ttt sttt st e e e e eneeenneens 120
11.3.2 OS debugger iNterfacCecooieiiiiiiiie e 122
P TR R © 15 T o o2 o o AP SRSRS 124
11.4 MUIEIPIEXEA PDOSc.eiiieieeie ettt e e ne e e e seeeneeneeeas 126
1141 MPDO ProtOCOLc..iieieiiie ettt eneas 126
11.4.2 Object dictionary entriesccceiieiiriiiiii e 127
11.4.3 Implementing MPDOS.........cccoiiiiiiie e 129
11.4.4 Groups, security and network configuration toolsccccccoveiiiniinecnenn 129
11.4.5 Indication of MPDO capability in the EDScccoeiiiiiiiiieieeeeeeee 129
11.5 Additional functionality for modular CANopen deviCes...........ccooeveiieniiniinnene 130
11.51 BaCKGroUNd ..o 130
11.5.2 MOAUIGr DEVICES ...ttt 130
11.6 Additional communication ObJECES..........ccciiiiiiiiii 132
11.6.1 Emergency consumer ODJECT..........coouiiiiiiii e 132
11.6.2 Error behaviour objJecCt ..o 133
INDEX ...neciiiiieees e s smes e s e sms s s e e ss e s ae s s s s s e s ae s e s e s meeae s e s e s sae s e e anennsnnsannannnnan 135

TABLES CANopen CiA
1 TABLES

Table 1: Object DiCtioNary SITUCIUEcouiiiiiiii e sttt 16
Table 2: Recommended Bit Timing SettiNgScooiiiiiii e e e 20
L= Lo LT BT (= I T USSR 31
Table 4: REAA PDO ...ttt ettt b bt b e st e b e e bt e s aeeeae e eaeeeaeenteeneeeateente et enee 31
Table 5: SDO DOWRNIOAAc..eiiuiiiiiiitiiiiie ittt ettt ettt b e be e b e bt e saeesseeeaeesneesneeneeemteeateenteenes 35
Table 6: Initiate SDO DOWNIOATcoiiiiiiiiiiiiiiiii ettt be e s et e s ae e saeesaeenteemteeneeenes 35
Table 7: Download SDO SEMENTcoiiiiiiiiiiiiee ettt b et b e bt e s e saeesaeesneenteeneeenes 36
BT o) LIRS T 1@ T U o o = Vo RSP 36
Table 9: Initiate SDO UPIOAd...........ooiiiieiiee et e et e st e eneeenneeesteesnseeenneeenneeas 37
Table 10: Upload SDO SEOMENT.......ciiiiiiiiiiiiiiiii ettt ettt ettt et be e be e s beesaeesseesaeesneeseeenteeneeenes 37
Table 11: ADOIt SDO TraNSTEI.......eiiuiiiie et b e b st e s aeeseesnteente et enee 37
Table 12: SDO BIOCK DOWNIOAA..........oiieieiiiiieeie ettt eeesee e eneeseesseeneseeeneenseneens 38
Table 13: Initiate SDO BIOCK DOWNIOA.........ccciiiiiiiiiiiie e st e 38
Table 14: DOWNIOAd SDO BIOCK.......cc.iiiieiiisie ettt sae e seesaeene e e e seeeseeneseeeneenseneeas 39
Table 15: ENd SDO BIOCK DOWNIOAcoiuiiiiiiiiiiiiiie ettt st e ne e 39
Table 16: SDO BIOCK UPIO@Q........ccoiiiiieieiie ettt sse e seesae e eeessesnesseseeeneensenaeas 40
Table 17: Initiate SDO BIOCK UPIOAQ.......c.ciiiiieiiiieiie ettt et e s e e nnaeeseeeenneeenneeas 40
Table 18: Upload SDO BIOCK........ccciiiieeieeeiiesieeie st sieeee ettt ee e seeeseeeesaesseeneensesseeneeseasessesseseesneensessens 41
Table 19: ENd SDO BIOCK UPIOAQcoiiiieiiieiieeiie sttt et e e e eneeesneeeseeeseeenneeas 41
Table 20: SDO @DOM COUESeiiuiiiiiiiii ittt b e b e bt e s bt e s ae e s st e saeeneeemteenteenteenes 48
Table 21: EMEergency ErmOr COUES.ooiiiiiiiiiiie ettt see et e 60
Table 22: Start REMOTE NOGEcoiiiiiii ettt sttt et 63
Table 23: Stop REMOLE NOGEocooiieiieciee ettt ettt e e e et e e e e eare e e abaeaeasreeans 63
Table 24: Enter Pre-Operationalocuiii ittt ettt e e e et e e e e earesenabeeaeenreeens 63
Table 25: RESEE NOGE ..ottt et e et es et esr e e e ne e e nnre s 64
Table 26: Reset COMMUNICALIONcoiiiiiiiiiii ettt s e st e et e e 64
Table 27: Node GUarding EVENT.........ccooiiiiii ettt e 65
Table 28: Life GUArding EVENL...........ooiiiiiiiii ettt e ee e 65
Table 29: Heartbeat EVENL..........oo e 65
Table 30: BOOUP EVENLot e e et e e et e e e et e e e e naeeeseeeeeeenseeeeaneeeeas 65
Table 31: Trigger for State TranSItioNccoi i et e e e snee s 75
Table 32: States and Communication ODJECESoouiiiiiiii e e 77
Table 33: Broadcast Objects of the Pre-defined Connection Set..........cccoeveveiiiii e 78
Table 34: Peer-to-Peer Objects of the Pre-defined Connection Setcccovviiiiiiciiicciece e 78
Table 35: RESIHCIEA COB-IDSccoi it e sttt esae st e e e neesaeeneeeessesnesseseeeneensenaeas 78
Table 36: Format of Object Dictionary HEadiNgS.......ccuuiuiiiiiiiiii et 79
Table 37: Object Dictionary Object DefiNitioNSccooiiiiieiir e 79
Table 38: Access Attributes for Data ODjJECESccuiiiiiiiiii et 80
Table 39: Object Dictionary Data TYPEScoiiiiiiiiiiiiiie ettt st e 80
Table 40: complex data type eXamPle ... e 82

TABLES CANopen CiA

Table 41: PDO Communication Parameter RECOIdccoiiiiiiiiiiieieesee e e 83
Table 42: PDO Mapping Parameter RECOIM.........ccciviiiieiiie ettt e see e e e e snaeeseeesneennee s 83
Table 43: SDO Parameter RECOITcouiiiiiiiiiiie ettt st 83
Table 44: 1dentity RECOMU........ooiiiiii e ettt e e e e ne e nnre s 83
Table 45: Format of an Object DESCIIPLONc.uiiiiiiiiiire et 84
Table 46: Object Value DescCription FOMMAt.........coociiiiiii e sre e nnee s 84
Table 47: STaNAArd ODJECLScoiuiiiiiiii ittt a e s a e st e st e s et et eeateente et e 84
Table 48: Structure of the Error REGISIErc..ei i e 87
Table 49: Description of SYNC COB-ID €NIIYcoiiiiiiiiiiiieie ettt 89
Table 50: SIruCtUre Of FEAA ACCESSeiiuiiiiiiiii ettt st e st et ene e 93
Table 51: Structure Of reStore read ACCESS.uiiuiiiiiiiiie et ee e 96
Table 52: Description of TIME COB-ID €NIIY........ccoiiiiiiiiiiiiiie et 97
Table 53: Description of EMCY COB-ID ENMIY.......cccuiiiiiiiiiiiie ittt s 99
Table 54: Description of SDO COB-ID ©NEIYcc.eiiiiiiiiie e 103
Table 55: Description of PDO COB-ID ©NEIYc..ooiiiiiiiieiie et nee e 106
Table 56: Description of tranSmMISSION tYPE.......c.uii i e e e 106

FIGURES CANopen CiA
2 FIGURES

Figure 1: RefErenCe MOcoiuiiiiiiiii ittt ettt ettt e e e st e sbeesbeesree 14
o U S T Y ot T Y] o= RSP RRRRRN 15
FIQUre 3: DEVICE MOUEI.......ooiieeie ettt ettt e e e eae e e sare e sn e nes 16
Figure 4: Unconfirmed Master Slave CommUNICAtION...........coiiiiiiiiiiii e 18
Figure 5: Confirmed Master Slave COMMUNICALION.........cciiiiiiiiiiiiie e 18
Figure 6: Client/Server COmMMUNICATIONeiiiiiiiiie ettt st ee e e e e e seeesreens 19
FIQUIe 7: PUSH MOTEL ... ettt b e er et e nnre e re e sn e nes 19
FIGUIE 8: PUII MOE ...ttt b et b e e snr e s e e sr e e nes 19
Figure 9: Transfer Syntax for Bit SEQUENCEScoiii it 25
Figure 10: Transfer syntax for data type UNSIGNEDNcccoiiiiiiiiiiiii e 26
Figure 11: Transfer syntax for data type INTEGERRDcccciiiiiiiiiii e 26
Figure 12: Transfer syntax of data type REALS2oo i 27
Figure 13: Synchronous and Asynchronous TranSmMiSSION.........c.ccciieiieiieieriie e 30
Figure 14: Write PDO ProfOCOIcoiuiiiiiiieiie ettt ettt ettt e e nree 32
Figure 15: Read PDO PrOtOCOL........coiiiiiiitieitie ittt sttt sttt sttt sttt et et e st e enteeteenbeesbeenbeens 32
Figure 16: DOWNIOad SDO ProtOCOLcoiuiiiiiiiiiiiie it stee sttt sttt st sttt e st e easeensesteeneeesteens 42
Figure 17: Initiate SDO Download ProtOCOLcoiiiiiiiiiiie ettt nee e 43
Figure 18: Download SDO Segment ProtOCOuoiieiiriieiie ettt seeens 44
Figure 19: Upload SDO PrOtOCOL.........coiiiiiiiieeiiee it steestee sttt sttt sttt e st e saeeeaeeeneesnsesnseeeesteeseeeseeens 45
Figure 20: Initiate SDO Upload ProtOCOL..........ciiiiiiiieiie ettt sttt seeesreens 46
Figure 21: Upload SDO Segment ProtOCOL..........ciiiiiiiiiiiiiie ittt st nre e 47
Figure 22: Abort SDO Transfer ProtOCOL.........coiiiiiiiie ettt saee e 48
Figure 23: SDO Block DOWNIOAA ProtOCOLcoiuiiiieiiie it itie sttt sttt sttt seeenreens 50
Figure 24: Initiate SDO Block DOwNnIoad ProtOCOL...........cceiiieiiiiieiie et 51
Figure 25: Download SDO BIOCK SEGMENT......c..coiiiiiiiiiiie ettt eee e neeens 52
Figure 26: End SDO Block DOwNIOad ProtOCOLcceeiiiiieiiiiieiie et seeens 53
Figure 27: Upload SDO BIOCK PrOtOCOL........cc.coiiiiiiiie ettt st e e nneens 54
Figure 28: Initiate SDO Block Upload ProtoCOL...........cciiiiiiiiiiieiie e 55
Figure 29: Upload SDO Block Segment ProtOCOL...........ccoiiiiiiiiiieiie e 56
Figure 30: End SDO Block Upload ProtoCOLcciiiiiiiiiiie ettt nee e 57
FigUure 31: SYNC PrOtOCOeiitiiitieitieitee ittt sttt sttt sttt sttt et e et e et e emeeenteenbeeeesbeesbeesaeesbeens 58
FIgure 32: TIME PrOtOCOLcoiiiiiiii ittt et e e e nne e e esr e nes 59
Figure 33: Emergency State Transition Diagramccccoiiiiiiiiniie i 61
Figure 34: Emergency ODJECE Data.........ccciiiiiiiiiii ittt seeesre e 61
Figure 35: Emergency ObJECt ProtOCOIcoiiiiiiiie ettt nre e 62
Figure 36: Start Remote NOde ProtOCOL..........cooiiiiiiiiiii e 66
Figure 37: Stop Remote NOde ProtOCOIcoiiiiiiiiiiie e 66
Figure 38: Enter Pre-Operational ProtOCOIcoiiiiiiiiiiie ettt s nee e 67
Figure 39: Reset NOUE ProtOCOIcooiiiiiiieiii et 67
Figure 40: Reset Communication ProtOCOIc.eiiiiiiiiiiiie et 68

FIGURES CANopen CiA
Figure 41: Node GUarding ProtOCOc.coiiiiiiiii ettt ettt e sbeesreens 69
Figure 42: Heartbeat ProtoCOloooiiiiiiiiii e 70
Figure 43: BOOtUP ProtOCOIc..uiiiiiieieii ettt sn e 71
Figure 44: Bus Synchronisation and ACIUALION.ccoiiiiiiiiiii e 72
Figure 45: Bus Synchronisation and Sampling..........ccccoiiiiiiiiiiiie e 72
Figure 46: Optional High Resolution Synchronisation Protocol............cccocviiiiiiiiiiieeeeeec e, 73
Figure 47: Flow Chart of the Network Initialisation ProCessc.ccuveiiiiiiiin e 74
Figure 48: State Diagram Of @ DEVICEcoiiiiiiiiiiie ettt sttt se e e ste e e e sreens 75
Figure 49: Structure of the Initialisation State ... 76
Figure 50: Identifier allocation scheme for the pre-defined connection set.............cococeiiiiiiciiiniene 78
Figure 51: structure sub-INAEX FFNc.coiiii e e 82
Figure 52: Structure of the Device Type Parameter. ... 86
Figure 53: Structure of the pre-defined error field ... 88
Figure 54: Structure of SYNC COB-ID €NMIYcoiiiiiiiiiiie e nreen 89
Figure 55: Storage Write acCeSS SIGNALUIEcoiiiiiiiiiiie et nree 93
Figure 56: Storage read aCCeSS SITUCIUIE........oc.iiiiiiii it sree 93
Figure 57: Restoring write aCCeSS SIGNAtUIE..........coociiiiiiiii e e e 95
FIgure 58: reStOre PrOCEAUIEoooiiiiii et ettt e et e s ne s e e snreesr e nes 95
Figure 59: Restoring default values read access SIrUCIUIE...........ccoiieiiiiiniin i 95
Figure 60: Structure of TIME COB-ID €NMIY........coiiiiiiiiiiie ettt sre e 97
Figure 61: Structure of the EMCY Identifier @ntry..........ccooiiiiiiiii e 98
Figure 62: Structure of Consumer Heartbeat Time entry...........ccccooiiiiiiiiiiee e 100
Figure 63: Structure of RevisSion NUMDET ..o e 101
Figure 64: Structure of SDO COB-ID €NIIY......ccuiiiiiiiiiiiie ettt 103
Figure 65: Structure of PDO COB-ID €NHIY......ccuiiiiiiiiiiiieie ettt e 106
Figure 66: Structure of PDO Mapping ENtryooiiiiiiii e e 109
Figure 67: Principle of PDO MaPPING......cciuieiieiiereiieesiteesieeseeesieeesieeeseeesseesnseeesseeesnseesnsesenseessseesnsensns 110

SCOPE CANopen CiA

3 SCOPE

This Part of EN 50325 specifies the following particular requirements for CANopen:
(1) Requirements for interfaces between controllers and switching elements;

(2) Normal service conditions for devices;

(3) Constructional and performance requirements.

10

REFERENCES

CANopen CiA

4 REFERENCES

4.1 Normative references

EN 50325-1: 2002

EN 61131-3: 1993

ISO 7498-1: 1994

ISO 8859: 1998
ISO 11898: 1993

ISO 646: 1991

Industrial communications subsystem based on ISO 11898 (CAN) for
controller-device interfaces
Part 1: General requirements

Programmable controllers
Part 3: Programming languages

Information technology - Open Systems Interconnection - Basic Reference
Model: The Basic Model

Information technology - 8-bit single-byte coded graphic character sets

Road vehicles - Interchange of digital information - Controller area network
(CAN) for high-speed communication

Information technology - ISO 7-bit coded character set for information
interchange

4.2 Informative references

IEEE 754: 1985

Standard for binary floating-point arithmetic

11

DEFINITIONS AND ABBREVIATIONS CANopen CiA

5 DEFINITIONS AND ABBREVIATIONS

5.1 Abbreviations

ARQ:
Automatic Repeat Request.

CAN:
Controller Area Network is an internally standardized serial bus system..

COB:

Communication Object. A unit of transportation in a CAN network. Data must be sent across a CAN
Network inside a COB. There are 2048 different COB's in a CAN network. A COB can contain at most
8 bytes of data.

COB-ID:

Each COB is uniquely identified in a CAN network by a number called the COB Identifier (COB-ID).
The COB-ID determines the priority of that COB for the MAC sub-layer.

Remote COB:
A COB whose transmission can be requested by another device.

CRC:
Cyclic Redundancy Check.

CSDO:
Client SDO.

LLC:
Logical Link Control. One of the sub-layers of the Data Link Layer in the CAN Reference Model that
gives the user an interface that is independent from the underlying MAC layer.

MAC:
Medium Access Control. One of the sub-layers of the Data Link Layer in the CAN Reference Model
that controls who gets access to the medium to send a message.

MDI:
Medium Dependent Interface. One of the sub-layers of the Physical Layer in the CAN Reference
Model that specifies the mechanical and electrical interface between the medium and a module.

NMT:
Network Management. One of the service elements of the application layer in the CAN Reference
Model. The NMT serves to configure, initialise, and handle errors in a CAN network.

Node-ID:
The Node-ID of the NMT Slave has to be assigned uniquely, or 0. If 0, the protocol addresses all NMT
Slaves.

Osl:
Open Systems Interconnection.

PDO:
Process Data Object.

PLS:
Physical Layer Signalling. One of the sub-layers of the Physical Layer in the CAN Reference Model
that specifies the bit representation, timing and synchronisation.

PMA:

Physical Medium Attachment. One of the sub-layers of the Physical Layer in the CAN Reference
Model that specifies the functional circuitry for bus line transmission/reception and may provide means
for failure detection.

12

DEFINITIONS AND ABBREVIATIONS

CANopen

CiA

RPDO:
Receive PDO.

SDO:
Service Data Object.

SSDO:
Server SDO.

SYNC:
Synchronisation Object.

TPDO:
Transmit PDO.

13

MODELING CANopen CiA

6 MODELING

CAN-based networks use the following reference model, device model, and communication model.

6.1 Reference Model

Application Process

_______ 4

Application Application
(1)
Presentation
Session
Transport
Network
Datalink LLC
MAC (2)
PLS
Physical
PMA
MDI (2)

* specified in this document
* specified in ISO 11898

Figure 1: Reference Model

The communication concept can be described similar to the ISO-OSI Reference Model (left side of
figure).
Application Layer:

The Application Layer comprises a concept to configure and communicate real-time-data as well as
the mechanisms for synchronization between devices. The functionality the application layer offers to
an application is logically divided over different service objects in the application layer. A service object
offers a specific functionality and all the related services. These services are described in the Service
Specification of that service object.

Applications interact by invoking services of a service object in the application layer. To realize these
services, this object exchanges data via the CAN Network with (a) peer service object(s) via a
protocol. This protocol is described in the Protocol Specification of that service object.

Service Primitives:

Service primitives are the means by which the application and the application layer interact. There are
four different primitives:
* arequestis issued by the application to the application layer to request a service

* an indication is issued by the application layer to the application to report an internal event
detected by the application layer or indicate that a service is requested

14

MODELING CANopen

CiA

* aresponse is issued by the application to the application layer to respond to a previous received

indication
* a confirmation is issued by the application layer to the application to report the result of a
previously issued request.

Application Layer Service Types

Application X Application X
request indication
— —
Local Service Provider Initiated
Service

Application X Application Y, Z,.. Application X Application Y
—_— |mrrmrnas —p indication request indication

— indication
— indication

PR R — —
confirmation response
Unconfirmed Service Confirmed Service

Figure 2: Service Types

A service type defines the primitives that are exchanged between the application layer and the co-
operating applications for a particular service of a service object.

* Alocal service involves only the local service object. The application issues a request to its local
service object that executes the requested service without communicating with (a) peer service

object(s).

* An unconfirmed service involves one or more peer service objects. The application issues a
request to its local service object. This request is transferred to the peer service object(s) that
each pass it to their application as an indication. The result is not confirmed back.

* A confirmed service can involve only one peer service object. The application issues a request to

its local service object. This request is transferred to the peer service object that passes it to the
other application as an indication. The other application issues a response that is transferred to

the originating service object that passes it as a confirmation to the requesting application.

* A provider initiated service involves only the local service object. The service object (being the
service provider) detects an event not solicited by a requested service. This event is then
indicated to the application.

Unconfirmed and confirmed services are collectively called remote services.
6.2 Device Model

6.2.1 General

A device is structured like the following (see Figure 3):

e Communication — This function unit provides the communication objects and the appropriate
functionality to transport data items via the underlying network structure.

* Object Dictionary — The Object Dictionary is a collection of all the data items which have an
influence on the behavior of the application objects, the communication objects and the state
machine used on this device.

* Application — The application comprises the functionality of the device with respect to the
interaction with the process environment.

15

MODELING

CANopen

CiA

Thus the Object Dictionary serves as an interface between the communication and the application.
The complete description of a device’s application with respect to the data items in the Object

Dictionary is named device profile.

Communication

Object Application
Dictionary

State machine

Comm.
| object <

Comm.
<_

Entry 1
Entry 2

I

Entry n

Bus system

6.2.2

The most important part of a device profile is the Object Dictionary description. The Object Dictionary

Application
object
Application
object
Application
object
Application
object

Figure 3: Device Model

The Object Dictionary

is essentially a grouping of objects accessible via the network in an ordered pre-defined fashion. Each
object within the dictionary is addressed using a 16-bit index.
The overall layout of the standard Object Dictionary is shown below. This layout closely conforms with
other industrial serial bus system concepts:

Table 1: Object Dictionary Structure

Index (hex) | Object

0000 not used

0001-001F | Static Data Types

0020-003F | Complex Data Types

0040-005F | Manufacturer Specific Complex Data Types
0060-007F | Device Profile Specific Static Data Types
0080-009F | Device Profile Specific Complex Data Types
00AOQ-OFFF | Reserved for further use

1000-1FFF | Communication Profile Area

2000-5FFF | Manufacturer Specific Profile Area
6000-9FFF | Standardised Device Profile Area
AO00-BFFF | Standardised Interface Profile Area
CO00-FFFF | Reserved for further use

The Object Dictionary may contain a maximum of 65536 entries which are addressed through a 16-bit

index.

16

MODELING CANopen CiA

The Static Data Types at indices 0001h through 001Fh contain type definitions for standard data types
like BOOLEAN, INTEGER, floating point, string, etc. These entries are included for reference only,
they cannot be read or written.

Complex Data Types at indices 0020h through 003Fh are pre-defined structures that are composed of
standard data types and are common to all devices.

Manufacturer Specific Complex Data Types at indices 0040h through 005Fh are structures composed
of standard data types but are specific to a particular device.

Device Profiles may define additional data types specific to their device type. The static data types
defined by the device profile are listed at indices 0060h - 007Fh, the complex ones at indices 0080h -
009Fh.

A device may optionally provide the structure of the supported complex data types (indices 0020h -
005Fh and 0080h - 009Fh) at read access to the corresponding index. Sub-index 0 then provides the
number of entries at this index, and the following sub-indices contain the data type encoded as
UNSIGNED16 according to Table 39.

The Communication Profile Area at indices 1000h through 1FFFh contains the communication specific
parameters for the CAN network. These entries are common to all devices.

The standardised device profile area at indices 6000h through 9FFFh contains all data objects
common to a class of devices that can be read or written via the network. The device profiles may use
entries from 6000h to 9FFFh to describe the device parameters and the device functionality. Within
this range up to 8 different devices can be described. In such a case the devices are denominated
Multiple Device Modules. Multiple Device Modules are composed of up to 8 device profile segments.
By this feature it is possible to build devices with multiple functionality. The different device profile
entries are shifted with 800h.

For Multiple Device Modules the object range 6000, to 67FF, is shifted as follows:

6000h to 67FFh device 0
6800h to 6FFFh device 1
7000h to 77FFh device 2
7800h to 7FFFh device 3
8000h to 87FFh device 4
8800h to 8FFFh device 5

9000h to 97FFh device 6

9800h to 9FFFh device 7
The PDO distribution shall be used for every segment of a Multiple Device Module with an offset of 64,
e.g. the first PDO of the second segment gets the number 65. In this way a system with a maximum of
8 segments is supported.
The Object Dictionary concept caters for optional device features which means a manufacturer does
not have to provide certain extended functionality on his devices but if he wishes to do so he must do
it in a pre-defined fashion.
Space is left in the Object Dictionary at indices 2000h through 5FFFh for truly manufacturer-specific
functionality.

6.2.2.1 Index and Sub-Index Usage

A 16-bit index is used to address all entries within the Object Dictionary. In case of a simple variable

the index references the value of this variable directly. In case of records and arrays however, the

index addresses the whole data structure.

To allow individual elements of structures of data to be accessed via the network a sub-index is
defined. For single Object Dictionary entries such as an UNSIGNED8, BOOLEAN, INTEGER32 etc.
the value for the sub-index is always zero. For complex Object Dictionary entries such as arrays or
records with multiple data fields the sub-index references fields within a data-structure pointed to by
the main index. The fields accessed by the sub-index can be of differing data types.

6.3 Communication Model

The communication model specifies the different communication objects and services and the
available modes of message transmission triggering.

The communication model supports the transmission of synchronous and asynchronous messages.
By means of synchronous message transmission a network wide coordinated data acquisition and
actuation is possible. The synchronous transmission of messages is supported by pre-defined
communication objects (Sync message, time stamp message). Synchronous messages are
transmitted with respect to a pre-defined synchronization message, asynchronous message may be
transmitted at any time.

17

MODELING CANopen CiA

Due to the event character of the underlying communication mechanism it is possible to define inhibit
times for the communication. To guarantee that no starvation on the network occurs for data objects
with low priorities, data objects can be assigned an inhibit time. The inhibit-time of a data object
defines the minimum time that has to elapse between two consecutive invocations of a transmission
service for that data object. Inhibit-times can be assigned by the application.

With respect to their functionality, three types of communication relationships are distinguished

* Master/Slave relationship (Figure 4 and Figure 5)

¢ Client/Server relationship (Figure 6)

¢ Producer/Consumer relationship (Figure 7 and Figure 8)

6.3.1 Master/Slave relationship

At any time there is exactly one device in the network serving as a master for a specific functionality.
All other devices in the network are considered as slaves. The master issues a request and the
addressed slave(s) respond(s) if the protocol requires this behavior.

Master Slaves
indication
request indication
> data indication
—>

Figure 4: Unconfirmed Master Slave Communication

Master Slave
request indication

> >

Remote Transmit Request

confirmation response

< data >

Figure 5: Confirmed Master Slave Communication

18

MODELING CANopen CiA

6.3.2 Client/Server relationship

This is a relationship between a single client and a single server. A client issues a request
(upload/download) thus triggering the server to perform a certain task. After finishing the task the
server answers the request.

Client Server
request indication
> data >
confirmation response
< < data < <

Figure 6: Client/Server Communication

6.3.3 Producer/Consumer relationship - Pull/Push model

The producer/consumer relationship model involves a producer and zero or more consumer(s). The
push model is characterized by an unconfirmed service requested by the producer. The pull model is
characterized by a confirmed service requested by the consumer.

Producer Consumers
indication
request indication
> data
indication
—>

Figure 7: Push model

Producer Consumers
indication request
«
Remote Transmit Request 1 request
|7 request
! I
i
response confirmation
> > data > >
indication
indication

Figure 8: Pull model

19

PHYSICAL LAYER

CANopen

7 PHYSICAL LAYER

The physical medium for devices is a differentially driven two-wire bus line with common return
according to high-speed transmission specification in ISO 11898.

71

Using the high-speed transceiver according to ISO 11898 the maximum rating for Vcan_ 1 and Vean o

Transceiver

shall be +16V. Galvanic isolation between bus nodes is optional. It is recommended to use a

transceiver that is capable of sustaining mis-connection of any of the wires of the connector including

the optional V+ voltages of up to 30V.

7.2

The recommended bit rates and corresponding bit timing recommendations' are listed in Table 2.

Bit rates and timing

One of these bit rates has to be supported.

Table 2: Recommended Bit Timing Settings

Bit rate Nominal | Number of Length of Location of
bit time | time quanta time sample
Bus length ") t, per bit quantum t, point
1 Mbit/s 1us 8 125 ns 6 tq
25m (750 ns)
800 kbit/s 1,25 ps 10 125 ns 8 1,
50 m (1 ps)
500 kbit/s 2 us 16 125 ns 14 1,
100 m (1,75 ps)
250 kbit/s 4 us 16 250 ns 14 1,
250 m @ (3.5 ps)
125 kbit/s 8 us 16 500 ns 14 1,
500 m @ (7 us)
50 kbit/s 20 us 16 1,25 us 14 1,
1000 m © (17,5 ps)
20 kbit/s 50 us 16 3,125 ps 14 1,
2500 m @ (43,75 pis)
10 kbit/s 100 ps 16 6,25 us 14 1,
5000 m ¥ (87,5 s)
The table entries are an example based on the follow acceptance:
Oscillator frequency 16 MHz +/-0.1% (1000 ppm)
Sampling mode Single sampling SAM =0
Synchronisation mode Recessive to dominant edges only SYNC =0
Synchronisation jump width 1"t SIW=0
Phase Segment 2 271, TSEG2 =1

Note 1:

Note 2:

Note 3:

Rounded bus length estimation (worst case) on basis 5 ns/m propagation delay

and a total effective device internal in-out delay as follows:

1M - 800 kbit/s:
500 - 250 kbit/s:
125 kbit/s:

50 - 10 kbit/s:

210 ns
300 ns (includes 2 * 40 ns for optocouplers)

450 ns (includes 2 * 100 ns for optocouplers)

1,5 t,; Effective delay = delay recessive to dominant plus

dominant to recessive divided by two.

For bus length greater than about 200 m the use of optocouplers is
recommended. If optocouplers are placed between CAN controller and

transceiver this affects the maximum bus length depending upon the propagation

delay of the optocouplers i.e. -4m per 10 ns propagation delay of employed

optocoupler type.

For bus length greater than about 1 km bridge or repeater devices may be

needed.

20

PHYSICAL LAYER CANopen CiA

Note 4 The bit timings in the table are calculated for an oscillator frequency of 16 MHz.
If another oscillator is used the number of time quanta may be different.
Nevertheless the location of the sample point shall be as near as possible at the
recommended sample point.

21

DATA LINK LAYER CANopen CiA

8 DATA LINK LAYER

The described networks are based on a data link layer and its sub-layers according to ISO 11898.
8.1 CAN Frame Type

This specification is based on the CAN Standard Frames with 11-bit Identifier Field. It is not required to
support the CAN Extended Frame with 29-bit Identifier Field.

However, as certain applications may require the usage of the extended frame with 29-bit Identifier
Field the network can be operated in this mode as well if it is supported by all nodes.

22

APPLICATION LAYER CANopen

CiA

9 APPLICATION LAYER

9.1 Data Types and Encoding Rules

9.1.1 General Description of Data Types and Encoding Rules

To be able to exchange meaningful data across the CAN network, the format of this data and its
meaning have to be known by the producer and consumer(s). This specification models this by the

concept of data types.

The encoding rules define the representation of values of data types and the CAN network transfer
syntax for the representations. Values are represented as bit sequences. Bit sequences are

transferred in sequences of octets (bytes). For numerical data types the encoding is little endian style

as shown in Figure 9.

Applications often require data types beyond the basic data types. Using the compound data type
mechanism the list of available data types can be extended. Some general extended data types are

defined as “Visible String” or “Time of Day” for example (see 9.1.6.2 and 9.1.6.4). The compound data
types are a means to implement user defined “DEFTYPES” in the terminology of this specification and

not “DEFSTRUCTS” (see Table 37: Object Dictionary Object Definitions).

9.1.2 Data Type Definitions

A data type determines a relation between values and encoding for data of that type. Names are
assigned to data types in their type definitions. The syntax of data and data type definitions is as

follows (see EN 61131-3).

data_definition ::= type_name data_name
type_definition ::= constructor type_name
constructor ::= compound_constructor |

basic_constructor
compound_constructor ::= array_constructor |

structure_constructor

array_constructor

structure_constructor

component_list
component

basic_constructor

bit_size

length

data_name
type_name
component_name
symbolic_name
positive_integer
letter

digit

= ‘ARRAY’ [length ‘' ‘OF type_name
= ‘STRUCT’ ‘OF’ component_list

::= component { ‘,” component }

::= type_name component_name

::= ‘BOOLEAN’ |
‘VOID’ bit_size |
‘INTEGER'’ bit_size |
‘UNSIGNED’ bit_size |
‘REAL32’ |
‘REALG4’ |
‘NIL’

=12 <> | ‘64

::= positive_integer

::= symbolic_name

::= symbolic_name

::= symbolic_name

= letter {[*_'] (letter | digit) }

s= (12 <>]'9) { digit }

s=A B <> |2 @b <..>]Z
=01 <.>|'9

23

APPLICATION LAYER CANopen CiA

Recursive definitions are not allowed.
The data type defined by type_definition is called basic (res.~compound) when the constructor is
basic_constructor (res. compound_constructor).

9.1.3 Bit Sequences

9.1.3.1 Definition of Bit Sequences

A bit can take the values 0 or 1. A bit sequence b is an ordered set of 0 or more bits. If a bit sequence
b contains more than 0 bits, they are denoted as bj, j > 0. Let b, ..., bn-1 be bits, n a positive integer.
Then
b=bgb1 ... bn-1
is called a bit sequence of length |b| = n. The empty bit sequence of length 0 is denoted .
Examples: 10110100, 1, 101, etc. are bit sequences.
The inversion operator (-) on bit sequences assigns to a bit sequence
b=bgb1 ... bn-1
the bit sequence
-b =-=bg -b1 ... =bn-1
Here -0 =1 and =1 = 0 on bits.
The basic operation on bit sequences is concatenation.
Leta=aQ ... am-1 and b = bg ... bn-1 be bit sequences. Then the concatenation of a and b, denoted
ab, is
ab=aQ ... am-1 b0 --- bn-1
Example: (10)(111) = 10111 is the concatenation of 10 and 111.
The following holds for arbitrary bit sequences a and b:

lab] = |a| + [b]
and
ca=ac=a
9.1.3.2 Transfer Syntax for Bit Sequences

For transmission across a CAN network a bit sequence is reordered into a sequence of octets. Here
and in the following hexadecimal notation is used for octets. Let b = bg...bn-1 be a bit sequence with
n<64. Denote k a non-negative integer such that 8(k - 1) < n < 8k. Then b is transferred in k octets
assembled as shown in Figure 9. The bits bj, i > n of the highest numbered octet are do not care bits.
Octet 1 is transmitted first and octet k is transmitted last. Hence the bit sequence is transferred as
follows across the CAN network:

b7, be, ..., bo, b15, ..., bs, ...

24

APPLICATION LAYER CANopen CiA

octet number 1. 2. k.

b7 .. bg b15 .. bg bgk -1 .. bgk -8

Figure 9: Transfer Syntax for Bit Sequences

Example:
Bit 9 Bit 0
10 0001 1100
2h 1h Ch
=21Ch

The bit sequence b = bg .. bg = 0011 1000 01 represents an UNSIGNED 10 with the value

21Ch and is transferred in two octets:
First 1Ch and then 02h.

9.1.4 Basic Data Types

For basic data types “type_name” equals the literal string of the associated constructor (aka
symbolic_name), e.g.,
BOOLEAN BOOLEAN

is the type definition for the BOOLEAN data type.
9.1.41 NIL

Data of basic data type NIL is represented by ¢.
9.1.4.2 Boolean

Data of basic data type BOOLEAN attains the values TRUE or FALSE. The values are represented as
bit sequences of length 1. The value TRUE (res. FALSE) is represented by the bit sequence 1 (res. 0).

9.14.3 Void

Data of basic data type VOIDn is represented as bit sequences of length n bit. The value of data of
type VOIDn is undefined. The bits in the sequence of data of type VOIDn must either be specified
explicitly or else marked "do not care".

Data of type VOIDn is useful for reserved fields and for aligning components of compound values on
octet boundaries.

9.1.4.4 Unsigned Integer

Data of basic data type UNSIGNEDnN has values in the non-negative integers. The value range is 0, ...,
2N-1. The data is represented as bit sequences of length n. The bit sequence
b= bO ...bn-']
is assigned the value
UNSIGNEDN(b) = bpy-1 2™ 1+ ..+ bq 21 + b 20
Note that the bit sequence starts on the left with the least significant byte.

Example: The value 266 = 10Ah with data type UNSIGNED16 is transferred in two octets
across the bus, first 0Ah and then 01h.

25

APPLICATION LAYER CANopen

CiA

The following UNSIGNEDN data types are transferred as shown below:

octet number 1. 2, 3. 4, 5. 6. 7. 8.
UNSIGNEDS b7..bg

UNSIGNED16 | b7..bg | bqs..bg

UNSIGNED24 | b7..bg | b1s..bg | b23..b1s

UNSIGNED32 | b7..bg | b1s..bg | b23..b1g | b31..b24

UNSIGNED40 | b7..bg | b1s..bg | b23..b16 | b31..b24 | b3g..b32

UNSIGNED48 | b7..bg | b15..bg | b23..b1g | b31..b24 | b3g..b32 | ba7..bag

UNSIGNEDS56 | b7..bg | b1s..bg | b23..b16 | b31..b24 | b3g..b32 | bag7..b4o | bss5..bsg8
UNSIGNED64 | b7..bg | b1s..bg | b23..b16 | b31..b24 | b3g..b32 | bg7..b40 | b55..b48 | be3..b56

Figure 10: Transfer syntax for data type UNSIGNEDnN

9.1.4.5 Signed Integer

Data of basic data type INTEGERnN has values in the integers. The value range is

2n-1. . 2n-1.1. The data is represented as bit sequences of length n. The bit sequence
b= bO .. bp-1
is assigned the value
INTEGERN(b) = bp2 2M2 + .+ b1 21 + by 20 ifbp.q1=0
and, performing two's complement arithmetic,
INTEGERN(b) = - INTEGERN("b) - 1 if bp-1 =1
Note that the bit sequence starts on the left with the least significant bit.

Example: The value —266 = FEF6h with data type INTEGER16 is transfered in two octets

across the bus, first F6h and then FEh.
The following INTEGERN data types are transfered as shown below:

octet number 1. 2, 3. 4, 5. 6. 7. 8.
INTEGERS b7..bg

INTEGER16 b7..bg | b15..bg

INTEGER24 b7..bg | b1s..bg | b23..b16

INTEGERS32 b7..bg | b1s..bg | b23..b16 | b31..b24

INTEGERA40 b7..bg | b15..bg | b23..b16 | b31..b24 | b3g..b32

INTEGER48 b7..bg | b1s..bg | b23..b1e | b31..b24 | b3g..b32 | bg7..bgo

INTEGERS6 b7..bg | b15..bg | b23..b16 | b31..b24 | b3g..b32 | bg7..bap | bss..bgs
INTEGERG64 b7..bg | b15..bg | b23..b16 | b31..b24 | b3g..b32 | bg7..b40 | bss5..b48 | be3..b5e

Figure 11: Transfer syntax for data type INTEGERnN

26

APPLICATION LAYER CANopen CiA

9.1.4.6 Floating-Point Numbers

Data of basic data types REAL32 and REALG64 have values in the real numbers.

The data type REAL32 is represented as bit sequence of length 32. The encoding of values follows
the IEEE 754-1985 Standard for single precision floating-point.

The data type REALG64 is represented as bit sequence of length 64. The encoding of values follows
the IEEE 754-1985 Standard for double precision floating-point numbers.

A bit sequence of length 32 either has a value (finite non-zero real number, X0, £) or is NaN (not-a-
number). The bit sequence
b=bQ ... b31
is assigned the value (finite non-zero number)
REAL32(b) = (-1)S 2E-127 (1 + F)
Here
S = b31 is the sign.
E=b30 27 + .+ b23 20,0 < E < 255, is the un-biased exponent.
F=223 (b2 222 + ...+ bq 21 + by 20) is the fractional part of the number.

E =0 is used to represent X 0. E = 255 is used to represent infinities and NaN's.
Note that the bit sequence starts on the left with the least significant bit.

Example:

6.25=2E 127 (1 + F) with

E =129 =27 +20 and

F=2"T+24=2 '23(222+279) hence the number is represented as:

S E F
b31 | b30--b23 b22 .. bo
0 100 0000 1 100 1000 0000 0000 0000 0000

6.25=bp .. b31 = 0000 0000 0000 0000 0001 0011 0000 0010

It is transferred in the following order:

octet number 1. 2. 3. 4.
REAL32 00h 00h C8h 40h

b7..bg | bqs..bg | b23..b16 | b31..b24

Figure 12: Transfer syntax of data type REAL32

27

APPLICATION LAYER CANopen CiA

9.1.5 Compound Data Types

Type definitions of compound data types expand to a unique list of type definitions involving only basic
data types. Correspondingly, data of compound type ‘type _name” are ordered lists of component data
named ‘component_name_i’ of basic type "basic_type i.

Compound data types constructors are ARRAY and STRUCT OF.

STRUCT OF
basic_type 1 component_name_1,
basic_type 2 component_name_2,
basic_type N component_name_N
type_name

ARRAY [length] OF basic_type type_name

The bit sequence representing data of compound type is obtained by concatenating the bit sequences
representing the component data.
Assume that the components ‘component_name_i" are represented by their bit sequences
b(i) fori=1,....N
Then the compound data is represented by the concatenated sequence
bo(7) .. bn-1(1) .. bn-1(N).

Example:

Consider the data type

STRUCT OF
INTEGER10 X,
UNSIGNED5 u

NewData

Assume x = - 423 = 259h and u = 30 = 1Eh. Let b(x) and b(u) denote the bit sequences
representing the values of x and u, respectively. Then:

b(x) = bo(x) .. bg(x) = 1001101001
b(u) = bo(u) .. b4(u) = 01111
b(xu) = b(x) b(u) = bo(xu) .. b14(xu) = 1001101001 01111

The value of the structure is transferred with two octets, first 59h and then 7Ah.

9.1.6 Extended Data Types

The extended data types consist of the basic data types and the compound data types defined in the
following subsections.

9.1.6.1 Octet String

The data type OCTET_STRINGI/ength is defined below; length is the length of the octet string.
ARRAY [length] OF UNSIGNED8 OCTET_STRINGI/ength

9.1.6.2 Visible String

The data type VISIBLE_STRINGI/ength is defined below. The admissible values of data of type
VISIBLE_CHAR are Oh and the range from 20h to 7Eh. The data are interpreted as 1ISO 646-1973(E)
7-bit coded characters. length is the length of the visible string.

UNSIGNEDS VISIBLE_CHAR

ARRAY [length] OF VISIBLE_CHAR VISIBLE_STRING/ength
There is no Oh necessary to terminate the string.

9.1.6.3 Unicode String

The data type UNICODE_STRINGI/ength is defined below; length is the length of the unicode string.
ARRAY [length] OF UNSIGNED16 UNICODE_STRING/ength

9.1.6.4 Time of Day

The data type TIME_OF_DAY represents absolute time. It follows from the definition and the encoding
rules that TIME_OF_DAY is represented as bit sequence of length 48.

28

APPLICATION LAYER CANopen CiA

Component ms is the time in milliseconds after midnight. Component days is the number of days since
January 1, 1984.

STRUCT OF
UNSIGNED28 ms,
VOID4 reserved,
UNSIGNED16 days

TIME_OF_DAY

9.1.6.5 Time Difference

The data type TIME_DIFFERENCE represents a time difference. It follows from the definition and the
encoding rules that TIME_DIFFERENCE is represented as bit sequence of length 48.

Time differences are sums of numbers of days and milliseconds. Component ms is the number
milliseconds. Component days is the number of days.

STRUCT OF
UNSIGNED28 ms,
VOID4 reserved,

UNSIGNED16 days
TIME_DIFFERENCE

9.1.6.6 Domain

Domains can be used to transfer an arbitrary large block of data from a client to a server and vv. The
contents of a data block is application specific and does not fall within the scope of this document.

9.2 Communication Objects

The communication objects are described by the services and protocols.

All services are described in a tabular form that contains the parameters of each service primitive that
is defined for that service. The primitives that are defined for a particular service determine the service
type (e.g. unconfirmed, confirmed, etc.). How to interpret the tabular form and what service types exist
is defined in 6.3 (Communication Model).

All services assume that no failures occur in the Data Link and Physical Layer of the CAN network.
These failures are resolved by the application and fall not in the scope of this document.

9.2.1 Process Data Object (PDO)

The real-time data transfer is performed by means of "Process Data Objects (PDO)". The transfer of
PDOs is performed with no protocol overhead.

The PDOs correspond to entries in the device Object Dictionary and provide the interface to the
application objects. Data type and mapping of application objects into a PDO is determined by a
corresponding default PDO mapping structure within the Device Object Dictionary. If variable PDO-
mapping is supported the number of PDOs and the mapping of application objects into a PDO may be
transmitted to a device during the device configuration process (see Initialisation Procedure) by
applying the SDO services to the corresponding entries of the Object Dictionary.

Number and length of PDOs of a device is application specific and have to be specified within the
device profile.

There are two kinds of use for PDOs. The first is data transmission and the second data reception. It is
distinguished in Transmit-PDOs (TPDOs) and Receive-PDOs (RPDOs). Devices supporting TPDOs
are PDO producer and devices which are able to receive PDOs are called PDO consumer. PDOs are
described by the PDO communication parameter (20h) and the PDO mapping parameter (21h). The
structure of these data types are explained in 9.5.4. The PDO communication parameter describes the
communication capabilities of the PDO. The PDO mapping parameter contains information about the
contents of the PDOs (device variables). The indices of the corresponding Object Dictionary entries
are computed by the following formulas:

* RPDO communication parameter index = 1400h + RPDO-number -1
e TPDO communication parameter index = 1800h + TPDO-number -1
* RPDO mapping parameter index = 1600h + RPDO-number -1

29

APPLICATION LAYER CANopen CiA

e TPDO mapping parameter index = 1A00h + TPDO-number -1

For each PDO the pair of communication and mapping parameter is mandatory. The entries
mentioned above are described in 9.5 (Object Dictionary).

9.2.1.1 Transmission Modes

The following PDO transmission modes are distinguished:
e Synchronous Transmission

* Asynchronous Transmission

In order to synchronise devices a synchronisation object (SYNC object) is transmitted periodically by a
synchronisation application. The SYNC object is represented by a pre-defined communication object
(see 9.2.3). In Figure 13 the principle of synchronous and asynchronous transmission is shown.
Synchronous PDOs are transmitted within a pre-defined time-window immediately after the SYNC
object. The principle of synchronous transmission is described in more detail in 9.3.

SYNC Synchronous SYNC SYNC
Object Window Object Object

X Length X X

T 7 L1,

time

Synchronous Asynchronous
PDOs PDOs

Figure 13: Synchronous and Asynchronous Transmission

The transmission type parameter of a PDO specifies the transmission mode as well as the triggering
mode.

For synchronous TPDOs the transmission type also specifies the transmission rate in form of a factor
based on the basic SYNC-object transmission period. A transmission type of 0 means that the
message shall be transmitted after occurrence of the SYNC but acyclic (not periodically), only if an
event occurred before the SYNC. A transmission type of 1 means that the message is transmitted with
every SYNC object. A transmission type of n means that the message is transmitted with every n-th
SYNC object. Asynchronous TPDOs are transmitted without any relation to a SYNC.

The data of synchronous RPDOs received after the occurrence of a SYNC is passed to the application
with the occurrence of the following SYNC, independent of the transmission rate specified by the
transmission type. The data of asynchronous RPDOs is passed directly to the application.

9.2.1.2 Triggering Modes

Three message triggering modes are distinguished:

* Event Driven
Message transmission is triggered by the occurrence of an object specific event. For synchronous
PDOs this is the expiration of the specified transmission period, synchronised by the reception of
the SYNC object.

For acyclically transmitted synchronous PDOs and asynchronous PDOs the triggering of a
message transmission is a device-specific event specified in the device profile.

¢ Timer Driven
Message transmission is either triggered by the occurrence of a device-specific event or if a
specified time has elapsed without occurrence of an event.

30

APPLICATION LAYER CANopen CiA

* Remotely requested
The transmission of an asynchronous PDO is initiated on receipt of a remote request initiated by
any other device (PDO consumer).

9.2.1.3 PDO Services

PDO transmission follows the producer/consumer relationship as described in 6.3.3.
Attributes:

- PDO number: PDO number [1..512] for every user type on the local device
- user type: one of the values {consumer, producer}
- data type: according to the PDO mapping
- inhibit-time: n*100 ys, n >>0
9.2.1.3.1 Write PDO

For the Write PDO service the push model is valid. There are zero or more consumers of a PDO. A
PDO has exactly one producer.

Through this service the producer of a PDO sends the data of the mapped application objects to the
consumer(s).

Table 3: Write PDO

Parameter Request / Indication
Argument Mandatory
PDO Number mandatory
Data mandatory
9.2.1.3.2 Read PDO

For the Read PDO service the pull model is valid. There are one or more consumers of a PDO. A PDO
has exactly one producer.

Through this service the consumer of a PDO requests the producer to supply the data of the mapped
application objects. The service is confirmed. The remote result parameter will confirm the value.

Table 4: Read PDO

Parameter Request / Indication Response / Confirm
Argument Mandatory

PDO Number mandatory
Remote Result Mandatory

Data mandatory

31

APPLICATION LAYER CANopen CiA

9.21.4 PDO Protocol

9.2.1.4.1 Write PDO Protocol

The service for a PDO write request is unconfirmed. The PDO producer sends the process data within
a PDO to the network. There can be 0..n PDO consumers. At the PDO consumer(s) the reception of a
valid PDO is indicated. Figure 14 shows the Write PDO Protocol.

PDO Producer Write PDO PDO Consumers
Indication
° L0=L=8) Indication
Request .>.
> Process Data > Indlcagm

Figure 14: Write PDO Protocol

Process-Data: up to L bytes of application data according to the PDO mapping

If L exceeds the number of bytes ‘n’ defined by the actual PDO mapping length only the first ‘n’ bytes
are used by the consumer. If L is less than ‘n’ the data of the received PDO is not processed and an
Emergency message with error code 8210h has to be produced if Emergency is supported.

9.2.1.4.2 Read PDO Protocol

The service for a PDO read request is confirmed. One or more PDO consumer transmit a remote
transmission request frame (RTR) to the network. At the reception of the RTR frame the PDO
producer for the requested PDO transmits the PDO. At all PDO consumers for this PDO the reception
is indicated. There can be 0..n PDO consumers. The read service is optional and depends on the
hardware capabilities. Figure 15 shows the Read PDO Protocol.

PDO Producer Read PDO PDO Consumers

Indication request

<

Remote Transmit Request

0 L(O0=<L<38)

response confirmation

> Process Data >

Figure 15: Read PDO Protocol

Process-Data: up to L bytes of application data according to the PDO mapping

If L exceeds the number of bytes ‘n’ defined by the actual PDO mapping length only the first ‘n’ bytes
are used by the consumer. If L is less than ‘n’ the data of the received PDO is not processed and an
Emergency message with error code 8210h has to be produced if Emergency is supported.

32

APPLICATION LAYER CANopen CiA

9.2.2 Service Data Object (SDO)

With Service Data Objects (SDOs) the access to entries of a device Object Dictionary is provided. As
these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple
data sets (each containing an arbitrary large block of data) from a client to a server and vice versa.
The client can control via a multiplexor (index and sub-index of the Object Dictionary) which data set is
to be transferred. The contents of the data set are defined within the Object Dictionary.

Basically a SDO is transferred as a sequence of segments. Prior to transferring the segments there is
an initialisation phase where client and server prepare themselves for transferring the segments. For
SDOs, it is also possible to transfer a data set of up to four bytes during the initialisation phase. This
mechanism is called an expedited transfer.

Optionally a SDO can be transferred as a sequence of blocks where each block is a sequence of up to
127 segments containing a sequence number and the data. Prior to transferring the blocks there is an
initialisation phase where client and server can prepare themselves for transferring the blocks and
negotiating the number of segments in one block. After transferring the blocks there is a finalisation
phase where client and server can optionally verify the correctness of the previous data transfer by
comparing checksums derived from the data set. This transfer type mentioned above is called a block
transfer which is faster than the segmented transfer for a large set of data.

In SDO Block Upload it is possible that the size of the data set does not justify the use of a block
transfer because of the implied protocol overhead. In these cases a support for a fallback to the
segmented or expedited transfer in initialisation phase can be implemented. As the assumption of the
minimal data set size for which a block transfer outperforms the other transfer types depends on
various parameters the client indicates this threshold value in bytes to the server in initialisation phase.
For the block transfer a Go-Back-n ARQ (Automatic Repeat Request) scheme is used to confirm each
block.

After block download the server indicates the client the last successfully received segment of this
block transfer by acknowledging this segment sequence number. Doing this the server implicitly
acknowledges all segments preceding this segment. The client has to start the following block transfer
with the retransmission of all not acknowledged data. Additionally the server has to indicate the
number of segments per block for the next block transfer.

After block upload the client indicates the server the last successfully received segment of this block
transfer by acknowledging this segment sequence number. Doing this the client implicitly
acknowledges all segments preceding this segment. The server has to start the following block
transfer with the retransmission of all not acknowledged data. Additionally the client has to indicate the
number of segments per block for the next block transfer.

For all transfer types it is the client that takes the initiative for a transfer. The owner of the accessed
Object Dictionary is the server of the SDO. Both the client or the server can take the initiative to abort
the transfer of a SDO.

By means of a SDO a peer-to-peer communication channel between two devices is established. A
device may support more than one SDO. One supported Server-SDO (SSDO) is the default case
(Default SDO).

SDOs are described by the SDO communication parameter record (22h).The structure of this data
type is explained in 9.5.4. The SDO communication parameter describes the communication
capabilities of the Server-SDOs and Client-SDOs (CSDO). The indices of the corresponding Object
Dictionary entries are computed by the following formulas:

e SSDO communication parameter index = 1200h + SSDO-number -1

e CSDO communication parameter index = 1280h + CSDO-number -1

For each SDO the communication parameters are mandatory. If only one SSDO exists the
communication parameters can be omitted. The entries mentioned above are described in 9.5 (Object
Dictionary).

9.2.2.1 SDO Services

The model for the SDO communication is the Client/Server model as described in 0.
Attributes:

- SDO number: SDO number [1..128] for every user type on the local device
- user type: one of the values {client, server}
- mux data type multiplexor containing index and sub-index of type

STRUCTURE OF UNSIGNED (16) , UNSIGNED (8),

with index specifying an entry of the device Object

33

APPLICATION LAYER CANopen CiA

Dictionary and "sub-index" specifying a component of a
device object dictionary entry

- transfer type: depends on the length of data to transfer:
expedited for up to 4 data bytes
segmented or block for more than 4 data bytes

- data type: according to the referenced index and sub-index

The following services can be applied onto a SDO depending on the application requirements:
e SDO Download, which can be split up into

- Initiate SDO Download
- Download SDO Segment
e SDO Upload, which can be split up into
- Initiate SDO Upload
- Upload SDO Segment
e Abort SDO Transfer

When using the segmented SDO download and upload services, the communication software will be
responsible for transferring the SDO as a sequence of segments.

Expetited transfer has to be supported. Segmented transfer has to be supported if objects larger than
4 Bytes are supported. Optionally the following SDO services for doing a block transfer with higher bus
utilisation and performance for a large data set size can be implemented:

e SDO Block Download, which can be split up into

- Initiate Block Download
- Download Block
- End Block Download
e SDO Block Upload, which can be split up into
- Initiate Block Upload
- Upload Block
- End Block Upload

When using the SDO block download and upload services, the communication software will be
responsible for transferring the data as a sequence of blocks.

In SDO Block Upload Protocol a support for a switch to SDO Upload Protocol in ‘Initiate SDO Block
Upload’ can be implemented to increase transfer performance for data which size does not justifies
using the protocol overhead of the ‘SDO Block Upload’ protocol.

For aborting a SDO block transfer the Abort SDO Transfer Service is used.

9.2.21.1 SDO Download

Through this service the client of a SDO downloads data to the server (owner of the Object
Dictionary). The data, the multiplexor (index and sub-index) of the data set that has been downloaded
and its size (only optionally for segmented transfer) are indicated to the server.

The service is confirmed. The remote result parameter will indicate the success or failure of the
request. In case of a failure, optionally the reason is confirmed.

The SDO download consists of at least the Initiate SDO Download service and optional of Download
SDO Segment services (data length > 4 bytes).

34

APPLICATION LAYER

CANopen

CiA

Table 5: SDO Download

Parameter Request / Indication Response / Confirm
Argument Mandatory

SDO Number mandatory

Data mandatory

Size optional

Multiplexor mandatory
Remote Result Mandatory

Success selection

Failure selection

Reason optional

9.2.2.1.2

Through this service the client of SDO requests the server to prepare for downloading data to the
server. Optionally the size of the data to be downloaded is indicated to the server.

The multiplexor of the data set whose download is initiated and the transfer type are indicated to the
server. In case of an expedited download, the data of the data set identified by the multiplexor and

Initiate SDO Download

size is indicated to the server.

Table 6: Initiate SDO Download

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Size optional
Multiplexor mandatory
Transfer type mandatory
Normal selection
Expedited selection
Data mandatory
Remote Result Mandatory
Success mandatory

The service is confirmed. The remote result parameter will indicate the success of the request. In case
of a failure, an Abort SDO Transfer request has to be executed. In the case of a successful expedited
download of a multiplexed DOMAIN, this service concludes the download of the data set identified by
multiplexor.

9.2.21.3

Through this service the client of a SDO supplies the data of the next segment to the server. The
segment data and optionally its size are indicated to the server. The continue parameter indicates the
server whether there are still more segments to be downloaded or that this was the last segment to be
downloaded.

Download SDO Segment

35

APPLICATION LAYER

CANopen

CiA

Table 7: Download SDO Segment

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO number mandatory
Data mandatory
Size optional
Continue mandatory
More selection
Last selection
Remote Result Mandatory
Success mandatory

The service is confirmed. The remote result parameter will indicate the success of the request. In case
of a failure, an Abort SDO transfer request must be executed. In case of success, the server has
accepted the segment data and is ready to accept the next segment. There can be at most one
Download SDO Segment service outstanding for a SDO transfer.

A successful Initiate SDO Download service with segmented transfer type must have been executed
prior to this service.

9.2.21.4 SDO Upload

Through this service the client of a SDO uploads data from the server. The multiplexor (index and sub-
index) of the data set that has to be uploaded is indicated to the server.

The SDO upload consists of at least the Initiate SDO Upload service and optional of Upload SDO
Segment services (data length > 4 bytes).

Table 8: SDO Upload

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO number mandatory
Multiplexor mandatory
Remote Result Mandatory
Success selection
Data mandatory
Size optional
Failure selection
Reason optional

The service is confirmed. The remote result parameter will indicate the success or failure of the
request. In case of a failure, optionally the reason is confirmed. In case of success, the data and its
size (optionally for segmented transfer) are confirmed.

9.2.21.5 Initiate SDO Upload

Through this service the client of a SDO requests the server to prepare for uploading data to the client.
The multiplexor (index and sub-index) of the data set whose upload is initiated is indicated to the
server.

The service is confirmed. The remote result parameter will indicate the success of the request. In case
of a failure, an Abort SDO Transfer request has to be executed. In the case of success, the size
(optionally for segmented transfer) of the data to be uploaded is confirmed. In case of successful
expedited upload, this service concludes the upload of the data set identified by multiplexor and the
corresponding data is confirmed.

36

APPLICATION LAYER

CANopen

CiA

9.2.2.1.6

Through this service the client of a SDO requests the server to supply the data of the next segment.
The continue parameter indicates the client whether there are still more segments to be uploaded or
that this was the last segment to be uploaded. There can be at most one Upload SDO Segment

Table 9: Initiate SDO Upload

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO number mandatory
Multiplexor mandatory
Remote Result Mandatory
Success mandatory
Size optional
Multiplexor mandatory
Transfer type mandatory
Normal selection
Expedited selection
Data mandatory

Upload SDO Segment

service outstanding for a SDO.
The service is confirmed. The remote result parameter will indicate the success of the request. In case

of a failure, an Abort SDO Transfer request must be executed. In case of success, the segment data

and optionally its size are confirmed.
A successful Initiate SDO Upload service with segmented transfer type must have been executed prior
to this service.

9.2.21.7

This service aborts the up- or download of a SDO referenced by is number. Optionally the reason is

Table 10: Upload SDO Segment

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO number mandatory
Remote Result Mandatory
Success mandatory
Data mandatory
Size optional
Continue mandatory
More selection
Last selection
Abort SDO Transfer

indicated. The service is unconfirmed. The service may be executed at any time by both the client and

the server of a SDO. If the client of a SDO has a confirmed service outstanding, the indication of the

abort is taken to be the confirmation of that service.
Table 11: Abort SDO Transfer

Parameter Request / Indication
Argument Mandatory
SDO number mandatory
Multiplexor mandatory
Reason mandatory

37

APPLICATION LAYER CANopen CiA

9.2.2.1.8 SDO Block Download

Through this service the client of SDO downloads data to the server of SDO (owner of the Object
Dictionary) using the block download protocol. The data, the multiplexor (index and sub-index) of the
data set that has been downloaded and optionally its size are indicated to the server.

The service is confirmed. The remote result parameter will indicate the success or failure of the
request. In case of a failure, optionally the reason is confirmed.

Table 12: SDO Block Download

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Data mandatory
Size optional
Multiplexor mandatory
Remote Result Mandatory
Success selection
Failure selection
Reason optional

Initiate SDO Block Download

Through this service the client of SDO requests the server of SDO (owner of the Object Dictionary) to
prepare for downloading data to the server.

The multiplexor of the data set whose download is initiated and optionally the size of the downloaded
data in bytes are indicated to the server.

The client as well as the server indicating their ability and/or demand to verify the complete transfer
with a checksum in End SDO Block Download.

Table 13: Initiate SDO Block Download

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Size optional
CRC ability mandatory
yes selection
no selection
Multiplexor mandatory
Remote Result Mandatory
Success mandatory
CRC ability mandatory
yes selection
no selection
Blksize mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the request, the
number of segments per block the server of SDO is able to receive and its ability and/or demand to
verify the complete transfer with a checksum. In case of a failure, an Abort SDO Transfer request must
be executed.

9.2.2.1.10 Download SDO Block

By this service the client of SDO supplies the data of the next block to the server of SDO. The block
data is indicated to the server by a sequence of segments. Each segment consists of the data and a
sequence number starting with 1 which is increased for each segment by 1 up to blksize. The
parameter blksize is negotiated between server and client in the ‘Initiate Block Download’ protocol and
can be changed by the server with each confirmation for a block transfer. The continue parameter

38

APPLICATION LAYER CANopen CiA

indicates the server whether to stay in the ‘Download Block’ phase or to change in the ‘End Download
Block’ phase.

Table 14: Download SDO Block

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Data mandatory
Continue mandatory
More selection
Last selection
Remote Result Mandatory
Success mandatory
Ackseq mandatory
Blksize mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the request. In
case of a success the ackseq parameter indicates the sequence number of the last segment the
server has received successfully. If this number does not correspond with the sequence number of the
last segment sent by the client during this block transfer the client has to retransmit all segments
discarded by the server with the next block transfer. In case of a fatal failure, an Abort SDO Transfer
request must be executed. In case of success, the server has accepted all acknowledged segment
data and is ready to accept the next block. There can be at most one Download SDO Block service
outstanding for a SDO transfer.

A successful 'Initiate SDO Block Download' service must have been executed prior to this service.

9.2.2.1.11 End SDO Block Download

Through this service the SDO Block Download is concluded.

The number of bytes not containing valid data in the last transmitted segments is indicated to the
server.

If the server as well as the client have indicated their ability and demand to check the complete
transfer with a checksum in ‘Initiate SDO Block Download’ this checksum is indicated to the server by
the client. The server also has to generate a checksum which has to be compared with the one
generated by the client.

Table 15: End SDO Block Download

Parameter Request / Indication Response / Confirm
Argument Mandatory

SDO Number mandatory

Valid_data mandatory

Ckecksum mandatory if negotiated

in initiate

Remote Result Mandatory

Success mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the request
(matching checksums between client and server if negotiated) and concludes the download of the
data set . In case of a failure, an Abort SDO Transfer request must be executed.

9.2.2.1.12 SDO Block Upload

Through this service the client of SDO uploads data from the server of SDO (owner of the Object
Dictionary) using the SDO block upload protocol. The data, the multiplexor (index and sub-index) of
the data set that has to be uploaded and optionally its size are indicated to the server.

The service is confirmed. The Remote Result parameter will indicate the success or failure of the
request. In case of a failure, optionally the reason is confirmed. In case of a success, the data and
optionally its size is confirmed.

39

APPLICATION LAYER

CANopen

CiA

Table 16: SDO Block Upload

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Multiplexor mandatory
Remote Result Mandatory
Success selection
Data mandatory
Size optional
Failure selection
Reason optional

9.2.2.1.13 Initiate SDO Block Upload

Through this service the client of SDO requests the server of SDO (owner of the Object Dictionary) to
prepare for uploading data to the client.

The multiplexor of the data set whose upload is initiated and the number of segments the client of the
SDO is able to receive are indicated to the server.

A protocol switch threshold value is indicated to the server. If the number of bytes that has to be
uploaded is less or equal this value the server can optionally conclude this data transfer with the ‘SDO
Upload Protocol’ as described in 9.2.2.1.4.

The client as well as the server indicating their ability and/or demand to verify the complete transfer

with a checksum in End SDO Block Upload
Optionally the size of the uploaded data in bytes are indicated to the client.

Table 17: Initiate SDO Block Upload

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Blksize mandatory
CRC ability mandatory
Yes selection
No selection
Multiplexor mandatory
Threshold mandatory
Remote Result Mandatory
Success mandatory
CRC ability mandatory
Yes selection
No selection
Size optional

The service is confirmed. In case of a failure, an Abort SDO Transfer request must be executed. In
case of success the size of the data in bytes to be uploaded is optionally indicated to the client.

If the size of the data that has to be uploaded is less or equal threshold the server can continue with
the SDO block upload protocol. In this case the Remote Result parameter and the further protocol is
described in 9.2.2.2.14.

9.2.2.1.14 Upload SDO Block

Through this service the client of SDO uploads the data of the next block from the server of SDO. The
block data is indicated to the client by a sequence of segments. Each segment consists of the
segment data and a sequence number starting with 1 which is increased for each segment by 1 up to
blksize. The parameter blksize is negotiated between server and client in the ‘Initiate Block Upload’
protocol and can be changed by the client with each confirmation for a block transfer. The continue
parameter indicates the client whether to stay in the ‘Upload Block’ phase or to change in the ‘End
Upload Block’ phase.

40

APPLICATION LAYER CANopen CiA

Table 18: Upload SDO Block

Parameter Request / Indication Response / Confirm
Argument Mandatory
SDO Number mandatory
Data mandatory
Continue mandatory
More selection
Last selection
Remote Result Mandatory
Success mandatory
Ackseq mandatory
Blksize mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the request. In
case of a success the ackseq parameter indicates the sequence number of the last segment the client
has received successfully. If this number does not correspond with the sequence number of the last
segment sent by the server during this block transfer the server has to retransmit all segments
discarded by the client with the next block transfer. In case of a fatal failure, an Abort SDO Transfer
request must be executed. In case of success, the client has accepted all acknowledged segment
data and is ready to accept the next block. There can be at most one Upload Block service
outstanding for a SDO transfer.

A successful 'Initiate SDO Block Upload' service must have been executed prior to this service.

9.2.2.1.15 End SDO Block Upload

Through this service the SDO Block Upload is concluded.

The number of bytes not containing valid data in the last transmitted segments is indicated to the
client.

If the server as well as the client have indicated their ability and demand to check the complete
transfer with a checksum during ‘Initiate SDO Block Upload’ this checksum is indicated to the client by
the server. The client also has to generate a checksum which has to be compared with the one
generated by the server.

Table 19: End SDO Block Upload

Parameter Request / Indication Response / Confirm
Argument Mandatory

SDO Number mandatory

Valid_data mandatory

Checksum mandatory if negotiated

in initiate

Remote Result Mandatory

Success mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the request
(matching checksums between client and server if demanded) and concludes the download of the
data set. In case of a failure, an Abort SDO Transfer request must be executed.

41

APPLICATION LAYER CANopen CiA

9.2.2.2 SDO Protocols

Six confirmed services (SDO Download, SDO Upload, Initiate SDO Upload, Initiate SDO Download,
Download SDO Segment, and Upload SDO Segment) and one unconfirmed service (Abort SDO
Transfer) are defined for Service Data Objects doing the standard segmented/expedited transfer.
Eight confirmed services (SDO Block Download, SDO Block Upload, Initiate SDO Upload, Initiate SDO
Block Download, Download SDO Segment, Upload SDO Segment, End SDO Upload and End SDO
Block Download) and one unconfirmed service (Abort SDO Block Transfer) are defined for Service
Data Objects doing the optional block transfer.

9.2.2.21 Download SDO Protocol
Client SDO Download (normal) Server Client SDO Download (expedited) Server
» |
Jnitiate SDO Download (e=0) }Jnitiate SDO Download (e=1) >I

J)ownload SDO Segment (t=0, c=0)

J)ownload SDO Segment (t=1, c=0)

Download SDO Segment (t=0, c=0)

J)ownload SDO Segment (t=?, c=1)

Figure 16: Download SDO Protocol

This protocol is used to implement the SDO Download service. SDOs are downloaded as a sequence
of zero or more Download SDO Segment services preceded by an Initiate SDO Download service.
The sequence is terminated by:

* an Initiate SDO Download request/indication with the e-bit set to 1 followed by an Initiate SDO
Download response/confirm, indicating the successful completion of an expedited download
sequence.

¢ aDownload SDO Segment response/confirm with the c-bit set to 1, indicating the successful
completion of a normal download sequence.

* an Abort SDO Transfer request/indication, indicating the unsuccessful completion of the download
sequence.

* anew Initiate Domain Download request/indication, indicating the unsuccessful completion of the
download sequence and the start of a new download sequence.

If in the download of two consecutive segments the toggle bit does not alter, the contents of the last

segment has to be ignored. If such an error is reported to the application, the application may decide

to abort the download.

42

APPLICATION LAYER

CANopen

CiA

9.2.2.2.2

Initiate SDO Download Protocol

This protocol is used to implement the Initiate SDO Download service for SDOs.

Client

ccs=1
request /
4>

<

confirm

Initiate SDO Download

Server

7.5

IN

3.2

7.5
scs=3

4.0

reserved

R
L

indication

—»

-«

response

Figure 17: Initiate SDO Download Protocol

* ccs: client command specifier

1: initiate download request

* scs: server command specifier
3: initiate download response

* n:Onlyvalidife=1ands =1, otherwise 0. If valid it indicates the number of bytes in d that do not
contain data. Bytes [8-n, 7] do not contain data.

e e:transfer type

0: normal transfer

1: expedited transfer

s: size indicator

0: data set size is not indicated
1: data set size is indicated
m:

d:

data

e=0,s=0:
e=0,s=1:
e=1,s=1

e=1,s=0:

* reserved: reserved for further use, always 0

d is reserved for further use.
d contains the number of bytes to be downloaded.

Byte 4 contains the Isb and byte 7 contains the msb.

d contains the data of length 4-n to be downloaded,

the encoding depends on the type of the data referenced

by index and sub-index

d contains unspecified number of bytes to be downloaded
* X: not used, always 0

multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.

43

APPLICATION LAYER

CANopen

CiA

9.2.2.2.3

This protocol is used to implement the Download SDO Segment service.

Download SDO Segment Protocol

] Download SDO Segment
Client Server
0 1 8

7.5 4 3.1 seg-data

ccs=0 t n
request / \ indication
—> —>
4+— 0 1 8 —
confirm \ 7 4 30 reserved / response

scs=1 t X

Figure 18: Download SDO Segment Protocol

ccs: client command specifier

0: download segment request

scs: server command specifier

1: download segment response

seg-data: at most 7 bytes of segment data to be downloaded. The encoding depends on the type
of the data referenced by index and sub-index

n: indicates the number of bytes in seg-data that do not contain segment data. Bytes [8-n, 7] do
not contain segment data. n = 0 if no segment size is indicated.

c: indicates whether there are still more segments to be downloaded.

0 more segments to be downloaded

1: no more segments to be downloaded

t: toggle bit. This bit must alternate for each subsequent segment that is downloaded. The first
segment will have the toggle-bit set to 0. The toggle bit will be equal for the request and the
response message.

X: not used, always 0

reserved: reserved for further use, always 0

44

APPLICATION LAYER CANopen CiA

9.22.24 Upload SDO Protocol
Client SDO Upload (normal) Server Client SDO Upload (expedited) Server
< |
Initiate SDO Upload (e=0) }Jnitiate SDO Upload (e=1)
g
<Upload SDO Segment (t=0, c=0)
g
<Upload SDO Segment (t=1, ¢=0)
g
<Upload SDO Segment (t=0, c=0)
g
<Upload SDO Segment (t=?, c=1)

Figure 19: Upload SDO Protocol

This protocol is used to implement the SDO Upload service. SDO are uploaded as a sequence of zero
or more Upload SDO Segment services preceded by an Initiate SDO Upload service. The sequence is
terminated by:

* an Initiate SDO Upload response/confirm with the e-bit set to 1, indicating the successful
completion of an expedited upload sequence.

* an Upload SDO Segment response/confirm with the c-bit set to 1, indicating the successful
completion of a normal upload sequence.

* an Abort SDO Transfer request/indication, indicating the unsuccessful completion of the upload
sequence.

* anew Initiate SDO Upload request/indication, indicating the unsuccessful completion of the
upload sequence and the start of a new sequence.

If in the upload of two consecutive segments the toggle bit does not alter, the contents of the last

segment has to be ignored. If such an error is reported to the application, the application may decide

to abort the upload.

45

APPLICATION

LAYER CANopen

CiA

9.2.2.2.5

Initiate SDO Upload Protocol

This protocol is used to implement the Initiate SDO Upload service.

Client

ccs=2 X
request
—>
<« v\o 1
confirm
7.5 3.2 1 0

Initiate SDO Upload

7.5 4.0 m

reserved

S

IN

\

Figure 20: Initiate SDO Upload Protocol

* ccs: client command specifier
2: initiate upload request

* scs: server command specifier
2: initiate upload response

* n:Onlyvalidife =1ands = 1, otherwise 0. If valid it indicates the number of bytes in d that do not

contain data. Bytes [8-n, 7] do not contain segment data.

e e: transfer type
0: normal transfer
expedited transfer

size indicator

data set size is not indicated

. data
e=0,s=0:
e=0,s=1:
e=1,s=1
e=1,s=0:

e X: not used,

1:
s:
0:
1: data set size is indicated
m:
d:

d is reserved for further use.

d contains the number of bytes to be uploaded.
Byte 4 contains the Isb and byte 7 contains the msb.
d contains the data of length 4-n to be uploaded,
the encoding depends on the type of the data referenced

by index and sub-index

d contains unspecified number of bytes to be uploaded.

always 0

* reserved: reserved for further use , always 0

erver

indication

—>»

-«

response

multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.

46

APPLICATION LAYER

CANopen

CiA

9.2.2.2.6

This protocol is used to implement the Upload SDO Segment service.

Upload SDO Segment Protocol

Client

request

—»

Upload SDO Segment

Server

7.5
ccs=3

3.0

reserved

-«

response

confirm
7.5 4 3.1 0 seg-data

8
\ indication
—>
8/

Figure 21: Upload SDO Segment Protocol

ccs: client command specifier

3: upload segment request

scs: server command specifier

0: upload segment response

t: toggle bit. This bit must alternate for each subsequent segment that is uploaded. The first
segment will have the toggle-bit set to 0. The toggle bit will be equal for the request and the
response message.

c: indicates whether there are still more segments to be uploaded.

0: more segments to be uploaded

1: no more segments to be uploaded

seg-data: at most 7 bytes of segment data to be uploaded. The encoding depends on the type of
the data referenced by index and sub-index

n: indicates the number of bytes in seg-data that do not contain segment data. Bytes [8-n, 7] do
not contain segment data. n = 0 if no segment size is indicated.

X: not used, always 0

reserved: reserved for further use, always 0

47

APPLICATION LAYER

CANopen

CiA

9.2.2.2.7

Abort SDO Transfer Protocol

This protocol is used to implement the Abort SDO Transfer Service.

Client/Server

request

—»

Abort SDO Transfer Server/

0 1 4 8

7.5 4.0 m d

Client

indication

—»

Figure 22: Abort SDO Transfer Protocol

e ¢s: command specifier
4: abort transfer request
¢ X: not used, always 0
* m: multiplexor. It represents index and sub-index of the SDO.
* d: contains a 4 byte abort code about the reason for the abort.

The abort code is encoded as UNSIGNED32 value.

Table 20: SDO abort codes

Abort code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specifier not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h The number and length of the objects to be mapped would exceed PDO
length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to an hardware error.

0607 0010h Data type does not match, length of service parameter does not match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist.

48

APPLICATION LAYER CANopen CiA

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h general error

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h Data cannot be transferred or stored to the application because of local
control.

0800 0022h Data cannot be transferred or stored to the application because of the
present device state.

0800 0023h Object dictionary dynamic generation fails or no object dictionary is
present (e.g. object dictionary is generated from file and generation fails
because of an file error).

The abort codes not listed here are reserved.

49

APPLICATION LAYER CANopen CiA

9.2.2.2.8 SDO Block Download Protocol
Client SDO_Block_Download Server
g
4Initiate Block Download
g
4Download Block
g
4Download Block (normal)
g
Download Block (normal)
>
4Download Block (last)
4End Block Download
Download_Block (normal) Download_Block (last)
Client Server Client Server
Download segment 0 (c=0, seqno = 0) Download segment 0 (c=0, seqno = 0)
Download segment 1 (c=0, seqno = 1) Download segment 1 (c=0, seqno = 1)
ownload segment n (c=0, seqno = n) Download segment n (c=1, seqno = n)
Confirm block Confirm block

Figure 23: SDO Block Download Protocol

This protocol is used to implement a SDO Block Download service. SDOs are downloaded as a

sequence of Download SDO Block services preceded by an Initiate SDO Block Download service. The

SDO Download Block sequence is terminated by:

* adownloaded segment within a block with the c-bit set to 1, indicating the completion of the block
download sequence.

* an 'Abort SDO Transfer' request/indication, indicating the unsuccessful completion of the
download sequence.

The whole ‘SDO Block Download’ service is terminated with the End SDO Block Download service. If
client as well as server have indicated the ability to generate a CRC during the Initiate SDO Block
Download service the server has to generate the CRC on the received data. If this CRC differs from
the CRC generated by the client the server has to indicate this with an ‘Abort SDO Transfer’ indication.

50

APPLICATION LAYER CANopen CiA

9.2.2.29 Initiate SDO Block Download Protocol
This protocol is used to implement the Initiate SDO Block Download service.

. Initiate Block Download
Client Server

—

P 0 1 4 5 8
confirm \ 7.5 4.3 2 1.0 m blksize reserved
scs=5 X sc ss=0

Figure 24: Initiate SDO Block Download Protocol

response

7.5 4.3 2 1 0 m size
ccs=6 X cc s cs=0 TR
request indication

* ccs: client command specifier
6: block download
* scs: server command specifier
5: block download
* s: size indicator
0: data set size is not indicated
1: data set size is indicated

e c¢s: client subcommand
0: initiate download request

* ss: server subcommand
0: initiate download response

¢ cc: client CRC support
cc=0: Client does not support generating CRC on data

cc=1: Client supports generating CRC on data

* sc: server CRC support
sc=0: Server does not support generating CRC on data

sc=1: Server supports generating CRC on data

* m: multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.
* size: download size in bytes
s=0: size is reserved for further use, always 0

s=1: size contains the number of bytes to be downloaded
Byte 4 contains the Isb and byte 7 the msb

* blksize: Number of segments per block with 0 < blksize < 128.
* X: not used, always 0
* reserved: reserved for further use, always 0

51

APPLICATION LAYER CANopen CiA

9.2.2.2.10 Download SDO Block Segment Protocol

This protocol is used to implement the Block Download service.

Download Block Segment
Client & Server

8 7.1 seg-data
[seqno . d t
indication
reauest I —>

47 0 1 2 3 8 /4—
response
7.5 4.2 1..0 ackseq blksize reserved

confirm
scs=5 X ss=2

Figure 25: Download SDO Block Segment

e scs: server command specifier

5: block download
* ss: server subcommand

2: block download response
* c: indicates whether there are still more segments to be downloaded

0: more segments to be downloaded
1: no more segments to be downloaded, enter End SDO block download phase
* seqno: sequence number of segment 0 < seqno < 128.

* seg-data: at most 7 bytes of segment data to be downloaded.

* ackseq: sequence number of last segment that was received successfully during the last block
download. If ackseq is set to 0 the server indicates the client that the segment with the sequence
number 1 was not received correctly and all segments have to be retransmitted by the client.

* blksize: Number of segments per block that has to be used by client for the following block
download with 0 < blksize < 128.
* X: not used, always 0

* reserved: reserved for further use, always 0

52

APPLICATION LAYER

CANopen

CiA

9.2.2.2.11

End SDO Block Download Protocol

This protocol is used to implement the End SDO Block Download service.

. End Block Download
Client
0 3
7.5 4.2 1 0 crc reserved
ccs=6 n X cs=1
reauest
< 0 1
confirm
7.5 4.2 1.0 reserved
scs=5 X ss=1

I
v

Server

indiiatinn

<—

resnonse

Figure 26: End SDO Block Download Protocol

* ccs: client command specifier

6:

5:

e c¢s: client subcommand

1:

* ss: server subcommand

1:

Bytes [8-n, 7] do not contain segment data.

block download
* scs: server command specifier

block download

end block download request

end block download response
* n: indicates the number of bytes in the last segment of the last block that do not contain data.

e crc: 16 bit Cyclic Redundancy Checksum (CRC) for the whole data set. The algorithm for
generating the CRC is described in 9.2.2.2.16. CRC is only valid if in Initiate Block Download cc
and sc are set to 1 otherwise CRC has to be set to 0.

¢ X: not used, always 0

* reserved: reserved for further use, always 0

53

APPLICATION LAYER CANopen CiA

9.2.2.2.12 Upload SDO Block Protocol

Client SDO_Block_Upload (normal) Server Client SDO_Block_Upload (fallback) Server

> |
4Initiate Block Upload (Phase I) Initiate Block Upload (Phase I) (pst != 0)
Initiate Block Upload (Phase Il) > Fallback to SDO Upload Protocol
Upload Block (normal)
g
Upload Block (normal)
g
Upload Block (last)
>
End Block Upload
>
Upload_Block (normal) Upload_Block (last)
Client Server Client Server
¢
Upload segment 0 (c=0, seqno = 0) Upload segment 0 (c=0, seqno = 0)
Upload segment 1 (c=0, seqno = 1) Upload segment 1 (c=0, seqno = 1)
¢
Upload segment n (c=0, seqno = n) q Upload segment n (c=1, seqno = n) q
Confirm block Confirm block

Figure 27: Upload SDO Block Protocol

This protocol is used to implement a SDO Block Upload service which starts with the Initiate SDO

Block Upload service. The client can indicate a threshold value to the server which is the minimum

value in bytes to increase transfer performance using the SDO Block Upload protocol instead of the

SDO Upload protocol. If the data set size is less or equal this value the server can continue with the

normal or expedited transfer of the SDO Block Upload protocol.

Otherwise SDOs are uploaded as a sequence of Upload SDO Block services. The SDO Upload Block

sequence is terminated by:

+ an uploaded segment within a block with the c-bit set to 1, indicating the completion of the block
upload sequence.

+ an Abort SDO Transfer request/indication, indicating the unsuccessful completion of the uploaded
sequence.

The whole ‘SDO Block Upload’ service is terminated with the ‘End SDO Block Upload’ service. If client

as well as server have indicated the ability to generate a CRC during the Initiate SDO Block Upload

service the client has to generate the CRC on the received data. If this CRC differs from the CRC

generated by the server the client has to indicate this with an ‘Abort SDO Transfer’ indication.

54

APPLICATION LAYER CANopen

CiA

9.2.2.2.13 Initiate SDO Block Upload Protocol

This protocol is used to implement the Initiate SDO Block Upload service. If the value of the Protocol
Switch Threshold parameter indicated by the client in the first request is less or equal the data set size
to be uploaded the server can continue with the SDO Upload Protocol as described in 9.2.2.2.4.

. Initiate Block Upload
Client Server
0 1 4 5 6 8
7.5 4.2 2 1.0 m blk- pst X
ccs=5 X cc cs=0 size
request indication
—>
4>
0 1 4 8 <
confirm \ 75 43 5 | o m size / response
scs=6 X sC s ss=0
0 1 8
7.5 4.2 1.0 reserved
ccs=5 X cs=3
request indication
—>
__>

Figure 28: Initiate SDO Block Upload Protocol

ccs: client command specifier

5: block upload

scs: server command specifier

6: block upload

c¢s: client subcommand

0: initiate upload request

3: start upload

ss: server subcommand

0: initiate upload response

m: multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.
cc: client CRC support

cc=0: Client does not support generating CRC on data

cc=1: Client supports generating CRC on data

sc: server CRC support
sc=0: Server does not support generating CRC on data

sc=1: Server supports generating CRC on data

pst: Protocol Switch Threshold in bytes to change the SDO transfer protocol
pst=0: Change of transfer protocol not allowed.

pst > 0: If the size of the data in bytes that has to be uploaded is less or equal pst the server

can optionally switch to the ‘SDO Upload Protocol’ by transmitting the server response

of the ‘SDO Upload Protocol’ as described in 9.2.2.2.4.
s: size indicator
0: data set size is not indicated
1: data set size is indicated
size: upload size in bytes

s=0: size is reserved for further use, always 0

s=1: size contains the number of bytes to be downloaded
Byte 4 contains the Isb and byte 7 the msb

blksize: Number of segments per block with 0 < blksize < 128.

X: not used, always 0

reserved: reserved for further use, always 0

55

APPLICATION LAYER CANopen CiA

9.2.2.2.14 Upload SDO Block Segment Protocol
This protocol is used to implement the SDO Block Upload service.
Figure 29: Upload SDO Block Segment Protocol

. Upload Block
Client proad Bloc Server

0 1 8

8 7.1 seg-data

seqno
reauest
indiI(_:ation / l | —

" 0 1 2 3 8 ““’f
confirm
7.5 4.2 1..0 ackseq blksize reserved

response
ccs=5 X cs=2

* ccs: client command specifier

5: block upload
e c¢s: client subcommand

2: block upload response
* c: indicates whether there are still more segments to be downloaded

0: more segments to be uploaded
1: no more segments to be uploaded, enter ‘End block upload’ phase
* seqno: sequence number of segment 0 < seqno < 128.

* seg-data: at most 7 bytes of segment data to be uploaded.

* ackseq: sequence number of last segment that was received successfully during the last block
upload. If ackseq is set to 0 the client indicates the server that the segment with the sequence
number 1 was not received correctly and all segments have to be retransmitted by the server.

* blksize: Number of segments per block that has to be used by server for the following block
upload with 0 < blksize < 128.

¢ X: not used, always 0

* reserved: reserved for further use, always 0

56

APPLICATION LAYER CANopen CiA

9.2.2.2.15 End SDO Block Upload Protocol

This protocol is used to implement the End SDO Block Upload service.

] End SDO Block Upload
Client Server

request

—»

resbonse

confirm
7.5 4.2

ccs=5 X X cs=1

o

reserved

7.5 4.2 1.0 crc reserved
37/ scs=6 n ss=1 \
indication
\0 1 8 /—V

Figure 30: End SDO Block Upload Protocol

* ccs: client command specifier

5: block upload
* scs: server command specifier

6: block upload
e c¢s: client subcommand

1: end block upload request
* ss: server subcommand

1: end block upload response
* n: indicates the number of bytes in the last segment of the last block that do not contain data.
Bytes [8-n, 7] do not contain segment data.

e crc: 16 bit Cyclic Redundancy Checksum (CRC) for the whole data set. The algorithm for
generating the CRC is described in 9.2.2.2.16. CRC is only valid if in Initiate Block Upload cc and
sc are set to 1 otherwise crc has to be set to 0.

¢ X: not used, always 0

* reserved: reserved for further use, always 0

9.2.2.2.16 CRC calculation algorithm to verify SDO Block Transfer

To verify the correctness of a SDO block upload/download client and server calculating a cyclic
redundancy checksum (CRC) which is exchanged and verified during End SDO Block
Download/Upload protocol. The check polynomial has the formula x*16 + x*12 + x*5 + 1. The
calculation has to be made with an initial value of 0.

57

APPLICATION LAYER CANopen CiA

9.2.3 Synchronisation Object (SYNC)

The Synchronisation Object is broadcasted periodically by the SYNC producer. This SYNC provides
the basic network clock. The time period between the SYNCs is specified by the standard parameter
communication cycle period (see Object 1006h: Communication Cycle Period), which may be
written by a configuration tool to the application devices during the boot-up process. There can be a
time jitter in transmission by the SYNC producer corresponding approximately to the latency due to
some other message being transmitted just before the SYNC.

In order to guarantee timely access to the CAN bus the SYNC is given a very high priority identifier
(1005h). Devices which operate synchronously may use the SYNC object to synchronise their own
timing with that of the Synchronisation Object producer. The details of this synchronisation are device
dependent and do not fall within the scope of this document. Devices which require a more accurate
common time base may use the high resolution synchronisation mechanism described in 9.3.2.

9.2.3.1 SYNC Services

The SYNC transmission follows the producer/consumer push model as described in 6.3.3. The service
is unconfirmed.

Attributes:
- user type: one of the values {consumer, producer}
- data type: nil
9.2.3.2 SYNC Protocol
One unconfirmed service (Write SYNC) is defined.
Write SYNC
SYNC Producer Write SYNC SYNC consumer(s)
Indication
In‘Eication
request L=0 Indi;tion
—P P

Figure 31: SYNC Protocol

e The SYNC does not carry any data (L=0).
The Identifier of the SYNC object is located at Object Index 1005h.

58

APPLICATION LAYER CANopen CiA

9.2.4 Time Stamp Object (TIME)

By means of the Time Stamp Object a common time frame reference is provided to devices. It
contains a value of the type TIME_OF_DAY. The Identifier of the TIME Object is located at Object
Index 1012h.

9.24.1 TIME Services

The Time Stamp Object transmission follows the producer/consumer push model as described in
6.3.3. The service is unconfirmed.

Attributes:
- user type: one of the values {consumer, producer}
- data type: TIME_OF_DAY
9.2.4.2 TIME Protocol
One unconfirmed service (Write TIME) is defined.
Write TIME
TIME Producer Write TIME TIME Consumer
0 L=6 Indiﬁtion
Indicati
request nl I(;a_g)r_]
1 ndication
> Time Stamp > ‘

Figure 32: TIME Protocol

* Time Stamp: 6 bytes of the Time Stamp Object

59

APPLICATION LAYER CANopen CiA

9.2.5 Emergency Object (EMCY)

9.2.5.1 Emergency Object Usage

Emergency objects are triggered by the occurrence of a device internal error situation and are
transmitted from an emergency producer on the device. Emergency objects are suitable for interrupt
type error alerts. An emergency object is transmitted only once per 'error event'. As long as no new
errors occur on a device no further emergency objects must be transmitted.

The emergency object may be received by zero or more emergency consumers. The reaction on the
emergency consumer(s) is not specified and does not fall in the scope of this document.

By means of this specification emergency error codes (Table 21) and the error register (

Table 48) are specified. Device specific additional information and the emergency condition do not fall
into the scope of this specification.

Table 21: Emergency Error Codes

Error Code (hex) Meaning
00xx Error Reset or No Error
10xx Generic Error
20xx Current
21xx Current, device input side
22xx Current inside the device
23xx Current, device output side
30xx Voltage
31xx Mains Voltage
32xx Voltage inside the device
33xx Output Voltage
40xx Temperature
41xx Ambient Temperature
42xx Device Temperature
50xx Device Hardware
60xx Device Software
61xx Internal Software
62xx User Software
63xx Data Set
70xx Additional Modules
80xx Monitoring
81xx Communication
8110 CAN Overrun (Objects lost)
8120 CAN in Error Passive Mode
8130 Life Guard Error or Heartbeat Error
8140 recovered from bus off
8150 Transmit COB-ID collision
82xx Protocol Error
8210 PDO not processed due to length error
8220 PDO length exceeded
90xx External Error
FOxx Additional Functions
FFxx Device specific

60

APPLICATION LAYER CANopen

The emergency object is optional. If a device supports the emergency object, it has to support at least

the two error codes 00xx and 10xx. All other error codes are optional.

A device may be in one of two emergency states (Figure 33). Dependent on the transitions emergency
objects will be transmitted. Links between the error state machine and the NMT state machine are

defined in the device profiles.

0.

After initialization the device enters the error free state if no error is detected. No error
message is sent.

The device detects an internal error indicated in the first three bytes of the emergency
message (error code and error register). The device enters the error state. An
emergency object with the appropriate error code and error register is transmitted. The
error code is filled in at the location of object 1003H (pre-defined error field).

One, but not all error reasons are gone. An emergency message containing error code
0000 (Error reset) may be transmitted together with the remaining errors in the error
register and in the manufacturer specific error field.

A new error occurs on the device. The device remains in error state and transmits an
emergency object with the appropriate error code. The new error code is filled in at the
top of the array of error codes (1003H). It has to be guaranteed that the error codes are
sorted in a timely manner (oldest error - highest sub-index, see Object 1003H).

All errors are repaired. The device enters the error free state and transmits an
emergency object with the error code ‘reset error / no error'.

lo

error free

1

bit

error occurred 3
<

Figure 33: Emergency State Transition Diagram

9.2.5.2 Emergency Object Data

The Emergency Telegram consists of 8 bytes with the data as shown in Figure 34: Emergency Object

Data.

Byte o | 1 [2 | 3 | 4 | 5 | 6 |

Content | Emergency Error Error Manufacturer specific Error Field
Code register

(see Table 21) | (Object
1001H)

Figure 34: Emergency Object Data

61

APPLICATION LAYER CANopen CiA

9.2.5.3 Emergency Object Services

Emergency object transmission follows the “producer — consumer” push model as described in 6.3.3.
The following object attributes are specified for emergency objects:

e user type: notifying device: producer
receiving devices: consumer

* data type: STRUCTURE OF
UNSIGNED(16) emergency_error_code,
UNSIGNED(8) error_register,
ARRAY (5) of UNSIGNED(8) manufacturer_specific_error_field

* inhibit time: Application specific

9.2.54 Emergency Object Protocol

One unconfirmed service (Write EMCY) is defined.

Write EMCY

EMCY Producer Write EMCT EMCY Consumer

Indigation
0 8 Indication
Reauest | d"'

> Emergency Object Data > ndicagon

Figure 35: Emergency Object Protocol

Is is not allowed to request an Emergency Object by a remote transmission request (RTR).

62

APPLICATION LAYER CANopen CiA

9.2.6 Network Management Objects

The Network Management (NMT) is node oriented and follows a master-slave structure. NMT objects
are used for executing NMT services. Through NMT services, nodes are initialised, started, monitored,
resetted or stopped. All nodes are regarded as NMT slaves. An NMT Slave is uniquely identified in the
network by its Node-ID, a value in the range of [1..127].

NMT requires that one device in the network fulfils the function of the NMT Master.

9.2.6.1 NMT Services

9.2.6.1.1 Module Control Services

Through Module Control Services, the NMT master controls the state of the NMT slaves. The state
attribute is one of the values {STOPPED, PRE-OPERATIONAL, OPERATIONAL, INITIALISING}. The
Module Control Services can be performed with a certain node or with all nodes simultaneously. The
NMT master controls its own NMT state machine via local services, which are implementation
dependent. The Module Control Services except Start Remote Node can be initiated by the local
application.

Start Remote Node

Through this service the NMT Master sets the state of the selected NMT Slaves to OPERATIONAL.
Table 22: Start Remote Node

Parameter Indication/Request
Argument Mandatory
Node-ID selection
All selection

The service is unconfirmed and mandatory. After completion of the service, the state of the selected
remote nodes will be OPERATIONAL.
Stop Remote Node

Through this service the NMT Master sets the state of the selected NMT Slaves to STOPPED.
Table 23: Stop Remote Node

Parameter Request/Indication
Argument Mandatory
Node-ID selection
All selection

The service is unconfirmed and mandatory. After completion of the service, the state of the selected
remote nodes will be STOPPED.

Enter Pre-Operational

Through this service the NMT Master sets the state of the selected NMT Slave(s) to "PRE-

OPERATIONAL".

Table 24: Enter Pre-Operational

Parameter Request/Indication
Argument Mandatory
Node-ID selection
All selection

The service is unconfirmed and mandatory for all devices. After completion of the service, the state of

the selected remote nodes will be PRE-OPERATIONAL.

63

APPLICATION LAYER

CANopen

CiA

Reset Node

Through this service the NMT Master sets the state of the selected NMT Slave(s) from any state to the

"reset application" sub-state.

Table 25: Reset Node

Parameter

Request/Indication

Argument
Node-ID
All

Mandatory
selection
selection

The service is unconfirmed and mandatory for all devices. After completion of the service, the state of
the selected remote nodes will be RESET APPLICATION.

Reset Communication

Through this service the NMT Master sets the state of the selected NMT Slave(s) from any state to the
"reset communication" sub-state. After completion of the service, the state of the selected remote
nodes will be RESET COMMUNICATION.

Table 26: Reset Communication

Parameter Request/Indication
Argument Mandatory
Node-ID selection
All selection

The service is unconfirmed and mandatory for all devices.
9.2.6.1.2 Error Control Services

Through Error control services the NMT detects failures in a CAN-based Network.

Local errors in a node may e.g. lead to a reset or change of state. The definition of these local errors
does not fall into the scope of this specification.

Error Control services are achieved principally through periodically transmitting of messages by a
device. There exist two possibilities to perform Error Control.

The guarding is achieved through transmitting guarding requests (Node guarding protocol) by the
NMT Master. If a NMT Slave has not responded within a defined span of time (node life time) or if the
NMT Slave’s communication status has changed, the NMT Master informs its NMT Master Application
about that event.

If Life guarding (NMT slave guarded NMT master) is supported, the slave uses the guard time and life-
time factor from its Object Dictionary to determine the node life time. If the NMT Slave is not guarded
within its life time, the NMT Slave informs its local Application about that event. If guard time