0
|
1 |
/*
|
|
2 |
This file is part of CanFestival, a library implementing CanOpen Stack.
|
|
3 |
|
|
4 |
Author: Christian Fortin (canfestival@canopencanada.ca)
|
|
5 |
|
|
6 |
See COPYING file for copyrights details.
|
|
7 |
|
|
8 |
This library is free software; you can redistribute it and/or
|
|
9 |
modify it under the terms of the GNU Lesser General Public
|
|
10 |
License as published by the Free Software Foundation; either
|
|
11 |
version 2.1 of the License, or (at your option) any later version.
|
|
12 |
|
|
13 |
This library is distributed in the hope that it will be useful,
|
|
14 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
15 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
16 |
Lesser General Public License for more details.
|
|
17 |
|
|
18 |
You should have received a copy of the GNU Lesser General Public
|
|
19 |
License along with this library; if not, write to the Free Software
|
|
20 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
21 |
*/
|
|
22 |
|
|
23 |
#include <stdlib.h>
|
|
24 |
|
|
25 |
#include <sys/time.h>
|
|
26 |
#include <signal.h>
|
|
27 |
|
|
28 |
#include <cyg/kernel/kapi.h>
|
|
29 |
#include <cyg/hal/hal_arch.h>
|
|
30 |
|
|
31 |
#include "applicfg.h"
|
|
32 |
#include <data.h>
|
|
33 |
#include <def.h>
|
|
34 |
#include <can.h>
|
|
35 |
#include <can_driver.h>
|
|
36 |
#include <objdictdef.h>
|
|
37 |
#include <objacces.h>
|
|
38 |
|
|
39 |
#include "lpc2138_pinout.h"
|
|
40 |
#include "lpc2138_defs.h"
|
|
41 |
#include "lpc2138.h"
|
|
42 |
|
|
43 |
#include "sja1000.h"
|
|
44 |
|
|
45 |
#include "time_slicer.h"
|
|
46 |
|
|
47 |
|
|
48 |
/*
|
|
49 |
SEND/RECEIVE
|
|
50 |
*/
|
|
51 |
CAN_HANDLE canOpen(s_BOARD *board)
|
|
52 |
{
|
|
53 |
return NULL;
|
|
54 |
}
|
|
55 |
|
|
56 |
/***************************************************************************/
|
|
57 |
int canClose(CAN_HANDLE fd0)
|
|
58 |
{
|
|
59 |
return 0;
|
|
60 |
}
|
|
61 |
|
|
62 |
UNS8 canReceive(CAN_HANDLE fd0, Message *m)
|
|
63 |
/*
|
|
64 |
Message *m :
|
|
65 |
typedef struct {
|
|
66 |
SHORT_CAN cob_id; // l'ID du mesg
|
|
67 |
UNS8 rtr; // remote transmission request. 0 if not rtr,
|
|
68 |
// 1 for a rtr message
|
|
69 |
UNS8 len; // message length (0 to 8)
|
|
70 |
UNS8 data[8]; // data
|
|
71 |
} Message;
|
|
72 |
|
|
73 |
Fill the structure "Message" with data from the CAN receive buffer
|
|
74 |
|
|
75 |
return : 0
|
|
76 |
*/
|
|
77 |
{
|
|
78 |
/*
|
|
79 |
the sja1000 must be set to the PeliCAN mode
|
|
80 |
*/
|
|
81 |
m->cob_id.w = sja1000_read(16) + (sja1000_read(17)<<8); // IO_PORTS_16(CAN0 + CANRCVID) >> 5
|
|
82 |
|
|
83 |
m->rtr = (sja1000_read(17) >> 4) & 0x01; // (IO_PORTS_8(CAN0 + CANRCVID + 1) >> 4) & 0x01;
|
|
84 |
|
|
85 |
m->len = sja1000_read(18);
|
|
86 |
|
|
87 |
m->data[0] = sja1000_read(19);
|
|
88 |
m->data[1] = sja1000_read(20);
|
|
89 |
m->data[2] = sja1000_read(21);
|
|
90 |
m->data[3] = sja1000_read(22);
|
|
91 |
m->data[4] = sja1000_read(23);
|
|
92 |
m->data[5] = sja1000_read(24);
|
|
93 |
m->data[6] = sja1000_read(25);
|
|
94 |
m->data[7] = sja1000_read(26);
|
|
95 |
|
|
96 |
sja1000_write(CMR, 1<<RRB ); // release fifo
|
|
97 |
|
|
98 |
return 0;
|
|
99 |
}
|
|
100 |
|
|
101 |
|
|
102 |
UNS8 canSend(CAN_HANDLE fd0, Message *m)
|
|
103 |
/*
|
|
104 |
Message *m :
|
|
105 |
typedef struct {
|
|
106 |
SHORT_CAN cob_id; // l'ID du mesg
|
|
107 |
UNS8 rtr; // remote transmission request. 0 if not rtr,
|
|
108 |
// 1 for a rtr message
|
|
109 |
UNS8 len; // message length (0 to 8)
|
|
110 |
UNS8 data[8]; // data
|
|
111 |
} Message;
|
|
112 |
|
|
113 |
Send the content of the structure "Message" to the CAN transmit buffer
|
|
114 |
|
|
115 |
return : 0 if OK, 1 if error
|
|
116 |
*/
|
|
117 |
{
|
|
118 |
unsigned char rec_buf;
|
|
119 |
|
|
120 |
do
|
|
121 |
{
|
|
122 |
rec_buf = sja1000_read(SR);
|
|
123 |
}
|
|
124 |
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high
|
|
125 |
|
|
126 |
sja1000_write(16, m->cob_id.w & 0xff);
|
|
127 |
sja1000_write(17, (m->cob_id.w >> 8) & 0xff);
|
|
128 |
sja1000_write(18, m->len);
|
|
129 |
|
|
130 |
sja1000_write(19, m->data[0]); // tx data 1
|
|
131 |
sja1000_write(20, m->data[1]); // tx data 2
|
|
132 |
sja1000_write(21, m->data[2]); // tx data 3
|
|
133 |
sja1000_write(22, m->data[3]); // tx data 4
|
|
134 |
sja1000_write(23, m->data[4]); // tx data 5
|
|
135 |
sja1000_write(24, m->data[5]); // tx data 6
|
|
136 |
sja1000_write(25, m->data[6]); // tx data 7
|
|
137 |
sja1000_write(26, m->data[7]); // tx data 8
|
|
138 |
|
|
139 |
sja1000_write(CMR,( (0<<SRR) | (0<<CDO) | (0<<RRB) | (0<<AT) | (1<<TR)));
|
|
140 |
do
|
|
141 |
{
|
|
142 |
rec_buf = sja1000_read(SR);
|
|
143 |
}
|
|
144 |
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high
|
|
145 |
|
|
146 |
return 0;
|
|
147 |
}
|
|
148 |
|
|
149 |
|
|
150 |
/*
|
|
151 |
SEQUENTIAL I/O TO FLASH
|
|
152 |
those functions are for continous writing and read
|
|
153 |
*/
|
|
154 |
|
|
155 |
|
|
156 |
int nvram_open(void)
|
|
157 |
{
|
|
158 |
/* some actions to initialise the flash */
|
|
159 |
data_len = 0;
|
|
160 |
|
|
161 |
data_addr = 0;
|
|
162 |
|
|
163 |
data_page = (unsigned int *)malloc(sizeof(unsigned int) * 64);
|
|
164 |
memset(data_page, 0, sizeof(unsigned int)*64);
|
|
165 |
|
|
166 |
if (data_page == NULL)
|
|
167 |
return -1;
|
|
168 |
|
|
169 |
return 0;
|
|
170 |
}
|
|
171 |
|
|
172 |
|
|
173 |
void nvram_close(void)
|
|
174 |
{
|
|
175 |
/* some actions to end accessing the flash */
|
|
176 |
free(data_page);
|
|
177 |
}
|
|
178 |
|
|
179 |
int _get_data_len(int type)
|
|
180 |
{
|
|
181 |
int len = 0; /* number of bytes */
|
|
182 |
switch(type)
|
|
183 |
{
|
|
184 |
case boolean:
|
|
185 |
len = 1;
|
|
186 |
break;
|
|
187 |
|
|
188 |
case int8:
|
|
189 |
case uint8:
|
|
190 |
len = 1;
|
|
191 |
break;
|
|
192 |
case int16:
|
|
193 |
case uint16:
|
|
194 |
len = 2;
|
|
195 |
break;
|
|
196 |
case int24:
|
|
197 |
case uint24:
|
|
198 |
len = 3;
|
|
199 |
break;
|
|
200 |
case int32:
|
|
201 |
case uint32:
|
|
202 |
case real32:
|
|
203 |
len = 4;
|
|
204 |
break;
|
|
205 |
case int40:
|
|
206 |
case uint40:
|
|
207 |
len = 5;
|
|
208 |
break;
|
|
209 |
case int48:
|
|
210 |
case uint48:
|
|
211 |
len = 6;
|
|
212 |
break;
|
|
213 |
case int56:
|
|
214 |
case uint56:
|
|
215 |
len = 7;
|
|
216 |
break;
|
|
217 |
case int64:
|
|
218 |
case uint64:
|
|
219 |
case real64:
|
|
220 |
len = 8;
|
|
221 |
break;
|
|
222 |
#if 0
|
|
223 |
/* TO DO */
|
|
224 |
case visible_string:
|
|
225 |
case octet_string:
|
|
226 |
case unicode_string:
|
|
227 |
case time_of_day:
|
|
228 |
case time_difference:
|
|
229 |
#endif
|
|
230 |
}
|
|
231 |
|
|
232 |
return len;
|
|
233 |
}
|
|
234 |
|
|
235 |
|
|
236 |
char nvram_write(int type, int access_attr, void *data)
|
|
237 |
/* return 0 if successfull */
|
|
238 |
{
|
|
239 |
int len = _get_data_len(type);
|
|
240 |
|
|
241 |
if (data_len+len > 256)
|
|
242 |
{
|
|
243 |
iat_flash_write_page(data_addr);
|
|
244 |
data_len = 0;
|
|
245 |
data_addr += 256;
|
|
246 |
}
|
|
247 |
|
|
248 |
memcpy(((char *)data_page)+data_len, data, len);
|
|
249 |
|
|
250 |
data_len += len;
|
|
251 |
|
|
252 |
return 0;
|
|
253 |
}
|
|
254 |
|
|
255 |
|
|
256 |
char nvram_read(int type, int access_attr, void *data)
|
|
257 |
/* return 0 if successful */
|
|
258 |
{
|
|
259 |
int len = _get_data_len(type);
|
|
260 |
|
|
261 |
if (data_len+len > 256)
|
|
262 |
{
|
|
263 |
data_addr += 256;
|
|
264 |
iat_flash_read_page(data_addr);
|
|
265 |
data_len = 0;
|
|
266 |
}
|
|
267 |
|
|
268 |
memcpy(data, ((char *)data_page)+data_len, len);
|
|
269 |
|
|
270 |
data_len += len;
|
|
271 |
|
|
272 |
return 0;
|
|
273 |
}
|
|
274 |
|
|
275 |
|
|
276 |
/*
|
|
277 |
LED
|
|
278 |
*/
|
|
279 |
|
|
280 |
void led_set_redgreen(unsigned char bits)
|
|
281 |
{
|
|
282 |
lpc2138_redgreenled_set(bits);
|
|
283 |
}
|
|
284 |
|