author | etisserant |
Wed, 29 Nov 2006 15:51:15 +0100 | |
changeset 48 | adc6572caf5d |
parent 18 | 2fc8aa46980b |
permissions | -rw-r--r-- |
0 | 1 |
/* |
2 |
This file is part of CanFestival, a library implementing CanOpen Stack. |
|
3 |
||
4 |
Author: Christian Fortin (canfestival@canopencanada.ca) |
|
5 |
||
6 |
See COPYING file for copyrights details. |
|
7 |
||
8 |
This library is free software; you can redistribute it and/or |
|
9 |
modify it under the terms of the GNU Lesser General Public |
|
10 |
License as published by the Free Software Foundation; either |
|
11 |
version 2.1 of the License, or (at your option) any later version. |
|
12 |
||
13 |
This library is distributed in the hope that it will be useful, |
|
14 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
16 |
Lesser General Public License for more details. |
|
17 |
||
18 |
You should have received a copy of the GNU Lesser General Public |
|
19 |
License along with this library; if not, write to the Free Software |
|
20 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
21 |
*/ |
|
22 |
||
23 |
#include <stdlib.h> |
|
24 |
||
25 |
#include <sys/time.h> |
|
26 |
#include <signal.h> |
|
27 |
||
28 |
#include <cyg/kernel/kapi.h> |
|
29 |
#include <cyg/hal/hal_arch.h> |
|
30 |
||
31 |
#include "applicfg.h" |
|
32 |
#include <data.h> |
|
33 |
#include <def.h> |
|
34 |
#include <can.h> |
|
35 |
#include <can_driver.h> |
|
36 |
#include <objdictdef.h> |
|
37 |
#include <objacces.h> |
|
38 |
||
39 |
#include "lpc2138_pinout.h" |
|
40 |
#include "lpc2138_defs.h" |
|
41 |
#include "lpc2138.h" |
|
42 |
||
43 |
#include "sja1000.h" |
|
44 |
||
45 |
#include "time_slicer.h" |
|
46 |
||
47 |
||
48 |
/* |
|
49 |
SEND/RECEIVE |
|
50 |
*/ |
|
51 |
CAN_HANDLE canOpen(s_BOARD *board) |
|
52 |
{ |
|
53 |
return NULL; |
|
54 |
} |
|
55 |
||
56 |
/***************************************************************************/ |
|
57 |
int canClose(CAN_HANDLE fd0) |
|
58 |
{ |
|
59 |
return 0; |
|
60 |
} |
|
61 |
||
62 |
UNS8 canReceive(CAN_HANDLE fd0, Message *m) |
|
63 |
/* |
|
64 |
Message *m : |
|
65 |
typedef struct { |
|
66 |
SHORT_CAN cob_id; // l'ID du mesg |
|
67 |
UNS8 rtr; // remote transmission request. 0 if not rtr, |
|
68 |
// 1 for a rtr message |
|
69 |
UNS8 len; // message length (0 to 8) |
|
70 |
UNS8 data[8]; // data |
|
71 |
} Message; |
|
72 |
||
73 |
Fill the structure "Message" with data from the CAN receive buffer |
|
74 |
||
75 |
return : 0 |
|
76 |
*/ |
|
77 |
{ |
|
78 |
/* |
|
79 |
the sja1000 must be set to the PeliCAN mode |
|
80 |
*/ |
|
81 |
m->cob_id.w = sja1000_read(16) + (sja1000_read(17)<<8); // IO_PORTS_16(CAN0 + CANRCVID) >> 5 |
|
82 |
||
83 |
m->rtr = (sja1000_read(17) >> 4) & 0x01; // (IO_PORTS_8(CAN0 + CANRCVID + 1) >> 4) & 0x01; |
|
84 |
||
85 |
m->len = sja1000_read(18); |
|
86 |
||
87 |
m->data[0] = sja1000_read(19); |
|
88 |
m->data[1] = sja1000_read(20); |
|
89 |
m->data[2] = sja1000_read(21); |
|
90 |
m->data[3] = sja1000_read(22); |
|
91 |
m->data[4] = sja1000_read(23); |
|
92 |
m->data[5] = sja1000_read(24); |
|
93 |
m->data[6] = sja1000_read(25); |
|
94 |
m->data[7] = sja1000_read(26); |
|
95 |
||
96 |
sja1000_write(CMR, 1<<RRB ); // release fifo |
|
97 |
||
98 |
return 0; |
|
99 |
} |
|
100 |
||
101 |
||
102 |
UNS8 canSend(CAN_HANDLE fd0, Message *m) |
|
103 |
/* |
|
104 |
Message *m : |
|
105 |
typedef struct { |
|
106 |
SHORT_CAN cob_id; // l'ID du mesg |
|
107 |
UNS8 rtr; // remote transmission request. 0 if not rtr, |
|
108 |
// 1 for a rtr message |
|
109 |
UNS8 len; // message length (0 to 8) |
|
110 |
UNS8 data[8]; // data |
|
111 |
} Message; |
|
112 |
||
113 |
Send the content of the structure "Message" to the CAN transmit buffer |
|
114 |
||
115 |
return : 0 if OK, 1 if error |
|
116 |
*/ |
|
117 |
{ |
|
118 |
unsigned char rec_buf; |
|
119 |
||
120 |
do |
|
121 |
{ |
|
122 |
rec_buf = sja1000_read(SR); |
|
123 |
} |
|
124 |
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high |
|
125 |
||
126 |
sja1000_write(16, m->cob_id.w & 0xff); |
|
127 |
sja1000_write(17, (m->cob_id.w >> 8) & 0xff); |
|
128 |
sja1000_write(18, m->len); |
|
129 |
||
130 |
sja1000_write(19, m->data[0]); // tx data 1 |
|
131 |
sja1000_write(20, m->data[1]); // tx data 2 |
|
132 |
sja1000_write(21, m->data[2]); // tx data 3 |
|
133 |
sja1000_write(22, m->data[3]); // tx data 4 |
|
134 |
sja1000_write(23, m->data[4]); // tx data 5 |
|
135 |
sja1000_write(24, m->data[5]); // tx data 6 |
|
136 |
sja1000_write(25, m->data[6]); // tx data 7 |
|
137 |
sja1000_write(26, m->data[7]); // tx data 8 |
|
138 |
||
139 |
sja1000_write(CMR,( (0<<SRR) | (0<<CDO) | (0<<RRB) | (0<<AT) | (1<<TR))); |
|
140 |
do |
|
141 |
{ |
|
142 |
rec_buf = sja1000_read(SR); |
|
143 |
} |
|
144 |
while ( (rec_buf & (1<<TBS))==0); // loop until TBS high |
|
145 |
||
146 |
return 0; |
|
147 |
} |
|
148 |
||
149 |
||
150 |
/* |
|
151 |
SEQUENTIAL I/O TO FLASH |
|
152 |
those functions are for continous writing and read |
|
153 |
*/ |
|
154 |
||
155 |
||
156 |
int nvram_open(void) |
|
157 |
{ |
|
18
2fc8aa46980b
First version of NVRAM implemented on the file system for can_virtual
oremeq
parents:
3
diff
changeset
|
158 |
return iat_init(); |
0 | 159 |
} |
160 |
||
161 |
||
162 |
void nvram_close(void) |
|
163 |
{ |
|
18
2fc8aa46980b
First version of NVRAM implemented on the file system for can_virtual
oremeq
parents:
3
diff
changeset
|
164 |
iat_end(); |
3 | 165 |
} |
166 |
||
167 |
||
168 |
void nvram_set_pos(UNS32 pos) |
|
169 |
/* set the current position in the NVRAM to pos */ |
|
170 |
{ |
|
171 |
} |
|
172 |
||
173 |
||
18
2fc8aa46980b
First version of NVRAM implemented on the file system for can_virtual
oremeq
parents:
3
diff
changeset
|
174 |
void nvram_new_firmware() |
3 | 175 |
{ |
176 |
/* |
|
177 |
this function is called whenever a new firmware is about |
|
178 |
to be written in the NVRAM |
|
179 |
*/ |
|
180 |
data_addr = regs_page[1] + regs_page[4]*NVRAM_BLOCK_SIZE; |
|
181 |
if (data_addr > NVRAM_MAX_SIZE) |
|
182 |
data_addr = NVRAM_BLOCK_SIZE; |
|
0 | 183 |
} |
184 |
||
185 |
int _get_data_len(int type) |
|
186 |
{ |
|
187 |
int len = 0; /* number of bytes */ |
|
188 |
switch(type) |
|
189 |
{ |
|
190 |
case boolean: |
|
191 |
len = 1; |
|
192 |
break; |
|
193 |
||
194 |
case int8: |
|
195 |
case uint8: |
|
196 |
len = 1; |
|
197 |
break; |
|
198 |
case int16: |
|
199 |
case uint16: |
|
200 |
len = 2; |
|
201 |
break; |
|
202 |
case int24: |
|
203 |
case uint24: |
|
204 |
len = 3; |
|
205 |
break; |
|
206 |
case int32: |
|
207 |
case uint32: |
|
208 |
case real32: |
|
209 |
len = 4; |
|
210 |
break; |
|
211 |
case int40: |
|
212 |
case uint40: |
|
213 |
len = 5; |
|
214 |
break; |
|
215 |
case int48: |
|
216 |
case uint48: |
|
217 |
len = 6; |
|
218 |
break; |
|
219 |
case int56: |
|
220 |
case uint56: |
|
221 |
len = 7; |
|
222 |
break; |
|
223 |
case int64: |
|
224 |
case uint64: |
|
225 |
case real64: |
|
226 |
len = 8; |
|
227 |
break; |
|
228 |
#if 0 |
|
229 |
/* TO DO */ |
|
230 |
case visible_string: |
|
231 |
case octet_string: |
|
232 |
case unicode_string: |
|
233 |
case time_of_day: |
|
234 |
case time_difference: |
|
235 |
#endif |
|
236 |
} |
|
237 |
||
238 |
return len; |
|
239 |
} |
|
240 |
||
241 |
||
3 | 242 |
char nvram_write_data(int type, int access_attr, void *data) |
0 | 243 |
/* return 0 if successfull */ |
244 |
{ |
|
245 |
int len = _get_data_len(type); |
|
246 |
||
3 | 247 |
if (data_len+len > NVRAM_BLOCK_SIZE) |
0 | 248 |
{ |
249 |
iat_flash_write_page(data_addr); |
|
250 |
data_len = 0; |
|
3 | 251 |
data_addr += NVRAM_BLOCK_SIZE; |
252 |
||
253 |
/* wrap-around address pointer */ |
|
254 |
if (data_addr > NVRAM_MAX_SIZE) |
|
255 |
data_addr = NVRAM_BLOCK_SIZE; |
|
256 |
||
257 |
data_num_pages++; |
|
0 | 258 |
} |
259 |
||
260 |
memcpy(((char *)data_page)+data_len, data, len); |
|
261 |
||
262 |
data_len += len; |
|
263 |
||
264 |
return 0; |
|
265 |
} |
|
266 |
||
267 |
||
3 | 268 |
char nvram_read_data(int type, int access_attr, void *data) |
0 | 269 |
/* return 0 if successful */ |
270 |
{ |
|
271 |
int len = _get_data_len(type); |
|
272 |
||
3 | 273 |
if (data_len+len > NVRAM_BLOCK_SIZE) |
0 | 274 |
{ |
3 | 275 |
data_addr += NVRAM_BLOCK_SIZE; |
276 |
||
277 |
/* wrap-around address pointer */ |
|
278 |
if (data_addr > NVRAM_MAX_SIZE) |
|
279 |
data_addr = NVRAM_BLOCK_SIZE; |
|
280 |
||
0 | 281 |
iat_flash_read_page(data_addr); |
282 |
data_len = 0; |
|
283 |
} |
|
284 |
||
285 |
memcpy(data, ((char *)data_page)+data_len, len); |
|
286 |
||
287 |
data_len += len; |
|
288 |
||
289 |
return 0; |
|
290 |
} |
|
291 |
||
3 | 292 |
/* |
293 |
NVRAM registers at block 0 |
|
294 |
pos description |
|
295 |
0 version of the current dictionnary |
|
296 |
1 starting address for data block |
|
297 |
2 date of last writing |
|
298 |
3 address of the previous dictionnary |
|
299 |
4 size in pages of the current dict |
|
300 |
*/ |
|
301 |
void nvram_write_reg(UNS32 reg, UNS16 pos) |
|
302 |
/* write reg at the position in the data block 0 */ |
|
303 |
{ |
|
304 |
regs_page[pos] = reg; |
|
305 |
} |
|
306 |
||
307 |
UNS32 nvram_read_reg(UNS16 pos) |
|
308 |
/* read reg at the position in the data block 0 */ |
|
309 |
{ |
|
310 |
return regs_page[pos]; |
|
311 |
} |
|
312 |
||
0 | 313 |
|
314 |
/* |
|
315 |
LED |
|
316 |
*/ |
|
317 |
||
3 | 318 |
void led_set_redgreen(UNS8 bits) |
319 |
/* bits : each bit of this uns8 is assigned a led |
|
320 |
0=off, 1=on |
|
321 |
*/ |
|
0 | 322 |
{ |
323 |
lpc2138_redgreenled_set(bits); |
|
324 |
} |
|
325 |