diff -r a0932a52e53b -r 1627d552f181 modbus/mb_runtime.c --- a/modbus/mb_runtime.c Thu Jun 18 10:42:08 2020 +0200 +++ b/modbus/mb_runtime.c Thu Jun 18 11:00:26 2020 +0200 @@ -25,6 +25,8 @@ #include #include /* required for memcpy() */ +#include +#include #include "mb_slave_and_master.h" #include "MB_%(locstr)s.h" @@ -299,10 +301,42 @@ // Enable thread cancelation. Enabled is default, but set it anyway to be safe. pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL); - // get the current time - clock_gettime(CLOCK_MONOTONIC, &next_cycle); - - // loop the communication with the client + // configure the timer for periodic activation + { + struct itimerspec timerspec; + timerspec.it_interval.tv_sec = period_sec; + timerspec.it_interval.tv_nsec = period_nsec; + timerspec.it_value = timerspec.it_interval; + + if (timer_settime(client_nodes[client_node_id].timer_id, 0 /* flags */, &timerspec, NULL) < 0) + fprintf(stderr, "Modbus plugin: Error configuring periodic activation timer for Modbus client %%s.\n", client_nodes[client_node_id].location); + } + + /* loop the communication with the client + * + * When the client thread has difficulty communicating with remote client and/or server (network issues, for example), + * then the communications get delayed and we will fall behind in the period. + * + * This is OK. Note that if the condition variable were to be signaled multiple times while the client thread is inside the same + * Modbus transaction, then all those signals would be ignored. + * However, and since we keep the mutex locked during the communication cycle, it is not possible to signal the condition variable + * during that time (it is only possible while the thread is blocked during the call to pthread_cond_wait(). + * + * This means that when network issues eventually get resolved, we will NOT have a bunch of delayed activations to handle + * in quick succession (which would goble up CPU time). + * + * Notice that the above property is valid whether the communication cycle is run with the mutex locked, or unlocked. + * Since it makes it easier to implement the correct semantics for the other activation methods if the communication cycle + * is run with the mutex locked, then that is what we do. + * + * Note that during all the communication cycle we will keep locked the mutex + * (i.e. the mutex used together with the condition variable that will activate a new communication cycle) + * + * Note that we never get to explicitly unlock this mutex. It will only be unlocked by the pthread_cond_wait() + * call at the end of the cycle. + */ + pthread_mutex_lock(&(client_nodes[client_node_id].mutex)); + while (1) { /* struct timespec cur_time; @@ -311,9 +345,22 @@ */ int req; for (req=0; req < NUMBER_OF_CLIENT_REQTS; req ++){ - /*just do the requests belonging to the client */ + /* just do the requests belonging to the client */ if (client_requests[req].client_node_id != client_node_id) continue; + + /* only do the request if: + * - this request was explictly asked to be executed by the client program + * OR + * - the client thread was activated periodically + * (in which case we execute all the requests belonging to the client node) + */ + if ((client_requests[req].flag_exec_req == 0) && (client_nodes[client_requests[req].client_node_id].periodic_act == 0)) + continue; + + //fprintf(stderr, "Modbus plugin: RUNNING<###> of Modbus request %%d (periodic = %%d flag_exec_req = %%d)\n", + // req, client_nodes[client_requests[req].client_node_id].periodic_act, client_requests[req].flag_exec_req ); + int res_tmp = __execute_mb_request(req); switch (res_tmp) { case PORT_FAILURE: { @@ -357,36 +404,40 @@ break; } } - } - // Determine absolute time instant for starting the next cycle - struct timespec prev_cycle, now; - prev_cycle = next_cycle; - timespec_add(next_cycle, period_sec, period_nsec); - /* NOTE A: - * When we have difficulty communicating with remote client and/or server, then the communications get delayed and we will - * fall behind in the period. This means that when communication is re-established we may end up running this loop continuously - * for some time until we catch up. - * This is undesirable, so we detect it by making sure the next_cycle will start in the future. - * When this happens we will switch from a purely periodic task _activation_ sequence, to a fixed task suspension interval. - * - * NOTE B: - * It probably does not make sense to check for overflow of timer - so we don't do it for now! - * Even in 32 bit systems this will take at least 68 years since the computer booted - * (remember, we are using CLOCK_MONOTONIC, which should start counting from 0 - * every time the system boots). On 64 bit systems, it will take over - * 10^11 years to overflow. - */ - clock_gettime(CLOCK_MONOTONIC, &now); - if ( ((now.tv_sec > next_cycle.tv_sec) || ((now.tv_sec == next_cycle.tv_sec) && (now.tv_nsec > next_cycle.tv_nsec))) - /* We are falling behind. See NOTE A above */ - || (next_cycle.tv_sec < prev_cycle.tv_sec) - /* Timer overflow. See NOTE B above */ - ) { - next_cycle = now; - timespec_add(next_cycle, period_sec, period_nsec); - } - - clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next_cycle, NULL); + + /* We have just finished excuting a client transcation request. + * If the current cycle was activated by user request we reset the flag used to ask to run it + */ + if (0 != client_requests[req].flag_exec_req) { + client_requests[req].flag_exec_req = 0; + client_requests[req].flag_exec_started = 0; + } + + //fprintf(stderr, "Modbus plugin: RUNNING<---> of Modbus request %%d (periodic = %%d flag_exec_req = %%d)\n", + // req, client_nodes[client_requests[req].client_node_id].periodic_act, client_requests[req].flag_exec_req ); + } + + // Wait for signal (from timer or explicit request from user program) before starting the next cycle + { + // No need to lock the mutex. Is is already locked just before the while(1) loop. + // Read the comment there to understand why. + // pthread_mutex_lock(&(client_nodes[client_node_id].mutex)); + + /* the client thread has just finished a cycle, so all the flags used to signal an activation + * and specify the activation source (periodic, user request, ...) + * get reset here, before waiting for a new activation. + */ + client_nodes[client_node_id].periodic_act = 0; + client_nodes[client_node_id].execute_req = 0; + + while (client_nodes[client_node_id].execute_req == 0) + pthread_cond_wait(&(client_nodes[client_node_id].condv), + &(client_nodes[client_node_id].mutex)); + + // We run the communication cycle with the mutex locked. + // Read the comment just above the while(1) to understand why. + // pthread_mutex_unlock(&(client_nodes[client_node_id].mutex)); + } } // humour the compiler. @@ -394,18 +445,85 @@ } + +/* Function to activate a client node's thread */ +/* returns -1 if it could not send the signal */ +static int __signal_client_thread(int client_node_id) { + /* We TRY to signal the client thread. + * We do this because this function can be called at the end of the PLC scan cycle + * and we don't want it to block at that time. + */ + if (pthread_mutex_trylock(&(client_nodes[client_node_id].mutex)) != 0) + return -1; + client_nodes[client_node_id].execute_req = 1; // tell the thread to execute + pthread_cond_signal (&(client_nodes[client_node_id].condv)); + pthread_mutex_unlock(&(client_nodes[client_node_id].mutex)); + return 0; +} + + + +/* Function that will be called whenever a client node's periodic timer expires. */ +/* The client node's thread will be waiting on a condition variable, so this function simply signals that + * condition variable. + * + * The same callback function is called by the timers of all client nodes. The id of the client node + * in question will be passed as a parameter to the call back function. + */ +void __client_node_timer_callback_function(union sigval sigev_value) { + /* signal the client node's condition variable on which the client node's thread should be waiting... */ + /* Since the communication cycle is run with the mutex locked, we use trylock() instead of lock() */ + //pthread_mutex_lock (&(client_nodes[sigev_value.sival_int].mutex)); + if (pthread_mutex_trylock (&(client_nodes[sigev_value.sival_int].mutex)) != 0) + /* we never get to signal the thread for activation. But that is OK. + * If it still in the communication cycle (during which the mutex is kept locked) + * then that means that the communication cycle is falling behing in the periodic + * communication cycle, and we therefore need to skip a period. + */ + return; + client_nodes[sigev_value.sival_int].execute_req = 1; // tell the thread to execute + client_nodes[sigev_value.sival_int].periodic_act = 1; // tell the thread the activation was done by periodic timer + pthread_cond_signal (&(client_nodes[sigev_value.sival_int].condv)); + pthread_mutex_unlock(&(client_nodes[sigev_value.sival_int].mutex)); +} + + + int __cleanup_%(locstr)s (); int __init_%(locstr)s (int argc, char **argv){ int index; - for (index=0; index < NUMBER_OF_CLIENT_NODES;index++) + for (index=0; index < NUMBER_OF_CLIENT_NODES;index++) { client_nodes[index].mb_nd = -1; - for (index=0; index < NUMBER_OF_SERVER_NODES;index++) + /* see comment in mb_runtime.h to understad why we need to initialize these entries */ + switch (client_nodes[index].node_address.naf) { + case naf_tcp: + client_nodes[index].node_address.addr.tcp.host = client_nodes[index].str1; + client_nodes[index].node_address.addr.tcp.service = client_nodes[index].str2; + break; + case naf_rtu: + client_nodes[index].node_address.addr.rtu.device = client_nodes[index].str1; + break; + } + } + + for (index=0; index < NUMBER_OF_SERVER_NODES;index++) { // mb_nd with negative numbers indicate how far it has been initialised (or not) // -2 --> no modbus node created; no thread created // -1 --> modbus node created!; no thread created // >=0 --> modbus node created!; thread created! server_nodes[index].mb_nd = -2; + /* see comment in mb_runtime.h to understad why we need to initialize these entries */ + switch (server_nodes[index].node_address.naf) { + case naf_tcp: + server_nodes[index].node_address.addr.tcp.host = server_nodes[index].str1; + server_nodes[index].node_address.addr.tcp.service = server_nodes[index].str2; + break; + case naf_rtu: + server_nodes[index].node_address.addr.rtu.device = server_nodes[index].str1; + break; + } + } /* modbus library init */ /* Note that TOTAL_xxxNODE_COUNT are the nodes required by _ALL_ the instances of the modbus @@ -421,9 +539,14 @@ return -1; } - /* init the mutex for each client request */ + /* init each client request */ /* Must be done _before_ launching the client threads!! */ for (index=0; index < NUMBER_OF_CLIENT_REQTS; index ++){ + /* make sure flags connected to user program MB transaction start request are all reset */ + client_requests[index].flag_exec_req = 0; + client_requests[index].flag_exec_started = 0; + /* init the mutex for each client request */ + /* Must be done _before_ launching the client threads!! */ if (pthread_mutex_init(&(client_requests[index].coms_buf_mutex), NULL)) { fprintf(stderr, "Modbus plugin: Error initializing request for modbus client node %%s\n", client_nodes[client_requests[index].client_node_id].location); goto error_exit; @@ -443,6 +566,39 @@ } client_nodes[index].init_state = 1; // we have created the node + /* initialize the mutex variable that will be used by the thread handling the client node */ + if (pthread_mutex_init(&(client_nodes[index].mutex), NULL) < 0) { + fprintf(stderr, "Modbus plugin: Error creating mutex for modbus client node %%s\n", client_nodes[index].location); + goto error_exit; + } + client_nodes[index].init_state = 2; // we have created the mutex + + /* initialize the condition variable that will be used by the thread handling the client node */ + if (pthread_cond_init(&(client_nodes[index].condv), NULL) < 0) { + fprintf(stderr, "Modbus plugin: Error creating condition variable for modbus client node %%s\n", client_nodes[index].location); + goto error_exit; + } + client_nodes[index].execute_req = 0; //variable associated with condition variable + client_nodes[index].init_state = 3; // we have created the condition variable + + /* initialize the timer that will be used to periodically activate the client node */ + { + // start off by reseting the flag that will be set whenever the timer expires + client_nodes[index].periodic_act = 0; + + struct sigevent evp; + evp.sigev_notify = SIGEV_THREAD; /* Notification method - call a function in a new thread context */ + evp.sigev_value.sival_int = index; /* Data passed to function upon notification - used to indentify which client node to activate */ + evp.sigev_notify_function = __client_node_timer_callback_function; /* function to call upon timer expiration */ + evp.sigev_notify_attributes = NULL; /* attributes for new thread in which sigev_notify_function will be called/executed */ + + if (timer_create(CLOCK_MONOTONIC, &evp, &(client_nodes[index].timer_id)) < 0) { + fprintf(stderr, "Modbus plugin: Error creating timer for modbus client node %%s\n", client_nodes[index].location); + goto error_exit; + } + } + client_nodes[index].init_state = 4; // we have created the timer + /* launch a thread to handle this client node */ { int res = 0; @@ -450,11 +606,11 @@ res |= pthread_attr_init(&attr); res |= pthread_create(&(client_nodes[index].thread_id), &attr, &__mb_client_thread, (void *)((char *)NULL + index)); if (res != 0) { - fprintf(stderr, "Modbus plugin: Error starting modbus client thread for node %%s\n", client_nodes[index].location); + fprintf(stderr, "Modbus plugin: Error starting thread for modbus client node %%s\n", client_nodes[index].location); goto error_exit; } } - client_nodes[index].init_state = 2; // we have created the node and a thread + client_nodes[index].init_state = 5; // we have created the thread } /* init each local server */ @@ -499,9 +655,26 @@ int index; for (index=0; index < NUMBER_OF_CLIENT_REQTS; index ++){ - /*just do the output requests */ + /* synchronize the PLC and MB buffers only for the output requests */ if (client_requests[index].req_type == req_output){ + + // lock the mutex brefore copying the data if(pthread_mutex_trylock(&(client_requests[index].coms_buf_mutex)) == 0){ + + // Check if user configured this MB request to be activated whenever the data to be written changes + if (client_requests[index].write_on_change) { + // Let's check if the data did change... + // compare the data in plcv_buffer to coms_buffer + int res; + res = memcmp((void *)client_requests[index].coms_buffer /* buf 1 */, + (void *)client_requests[index].plcv_buffer /* buf 2*/, + REQ_BUF_SIZE * sizeof(u16) /* size in bytes */); + + // if data changed, activate execution request + if (0 != res) + client_requests[index].flag_exec_req = 1; + } + // copy from plcv_buffer to coms_buffer memcpy((void *)client_requests[index].coms_buffer /* destination */, (void *)client_requests[index].plcv_buffer /* source */, @@ -509,7 +682,33 @@ pthread_mutex_unlock(&(client_requests[index].coms_buf_mutex)); } } - } + /* if the user program set the execution request flag, then activate the thread + * that handles this Modbus client transaction so it gets a chance to be executed + * (but don't activate the thread if it has already been activated!) + * + * NOTE that we do this, for both the IN and OUT mapped location, under this + * __publish_() function. The scan cycle of the PLC works as follows: + * - call __retrieve_() + * - execute user programs + * - call __publish_() + * - insert until time to start next periodic/cyclic scan cycle + * + * In an attempt to be able to run the MB transactions during the + * interval in which not much is going on, we handle the user program + * requests to execute a specific MB transaction in this __publish_() + * function. + */ + if ((client_requests[index].flag_exec_req != 0) && (0 == client_requests[index].flag_exec_started)) { + int client_node_id = client_requests[index].client_node_id; + if (__signal_client_thread(client_node_id) >= 0) { + /* - upon success, set flag_exec_started + * - both flags (flag_exec_req and flag_exec_started) will be reset + * once the transaction has completed. + */ + client_requests[index].flag_exec_started = 1; + } + } + } } @@ -544,12 +743,39 @@ /* kill thread and close connections of each modbus client node */ for (index=0; index < NUMBER_OF_CLIENT_NODES; index++) { close = 0; - if (client_nodes[index].init_state >= 2) { + if (client_nodes[index].init_state >= 5) { // thread was launched, so we try to cancel it! close = pthread_cancel(client_nodes[index].thread_id); close |= pthread_join (client_nodes[index].thread_id, NULL); if (close < 0) - fprintf(stderr, "Modbus plugin: Error closing thread for modbus client %%s\n", client_nodes[index].location); + fprintf(stderr, "Modbus plugin: Error closing thread for modbus client node %%s\n", client_nodes[index].location); + } + res |= close; + + close = 0; + if (client_nodes[index].init_state >= 4) { + // timer was created, so we try to destroy it! + close = timer_delete(client_nodes[index].timer_id); + if (close < 0) + fprintf(stderr, "Modbus plugin: Error destroying timer for modbus client node %%s\n", client_nodes[index].location); + } + res |= close; + + close = 0; + if (client_nodes[index].init_state >= 3) { + // condition variable was created, so we try to destroy it! + close = pthread_cond_destroy(&(client_nodes[index].condv)); + if (close < 0) + fprintf(stderr, "Modbus plugin: Error destroying condition variable for modbus client node %%s\n", client_nodes[index].location); + } + res |= close; + + close = 0; + if (client_nodes[index].init_state >= 2) { + // mutex was created, so we try to destroy it! + close = pthread_mutex_destroy(&(client_nodes[index].mutex)); + if (close < 0) + fprintf(stderr, "Modbus plugin: Error destroying mutex for modbus client node %%s\n", client_nodes[index].location); } res |= close; @@ -612,3 +838,122 @@ return res; } + + + + +/**********************************************/ +/** Functions for Beremiz web interface. **/ +/**********************************************/ + +/* + * Beremiz has a program to run on the PLC (Beremiz_service.py) + * to handle downloading of compiled programs, start/stop of PLC, etc. + * (see runtime/PLCObject.py for start/stop, loading, ...) + * + * This service also includes a web server to access PLC state (start/stop) + * and to change some basic confiuration parameters. + * (see runtime/NevowServer.py for the web server) + * + * The web server allows for extensions, where additional configuration + * parameters may be changed on the running/downloaded PLC. + * Modbus plugin also comes with an extension to the web server, through + * which the basic Modbus plugin configuration parameters may be changed + * + * These parameters are changed _after_ the code (.so file) is loaded into + * memmory. These changes may be applied before (or after) the code starts + * running (i.e. before or after __init_() ets called)! + * + * The following functions are never called from other C code. They are + * called instead from the python code in runtime/Modbus_config.py, that + * implements the web server extension for configuring Modbus parameters. + */ + + +/* The number of Cient nodes (i.e. the number of entries in the client_nodes array) + * The number of Server nodes (i.e. the numb. of entries in the server_nodes array) + * + * These variables are also used by the Modbus web config code to determine + * whether the current loaded PLC includes the Modbus plugin + * (so it should make the Modbus parameter web interface visible to the user). + */ +const int __modbus_plugin_client_node_count = NUMBER_OF_CLIENT_NODES; +const int __modbus_plugin_server_node_count = NUMBER_OF_SERVER_NODES; +const int __modbus_plugin_param_string_size = MODBUS_PARAM_STRING_SIZE; + + + +/* NOTE: We could have the python code in runtime/Modbus_config.py + * directly access the server_node_t and client_node_t structures, + * however this would create a tight coupling between these two + * disjoint pieces of code. + * Any change to the server_node_t or client_node_t structures would + * require the python code to be changed accordingly. I have therefore + * opted to create get/set functions, one for each parameter. + * + * We also convert the enumerated constants naf_ascii, etc... + * (from node_addr_family_t in modbus/mb_addr.h) + * into strings so as to decouple the python code that will be calling + * these functions from the Modbus library code definitions. + */ +const char *addr_type_str[] = { + [naf_ascii] = "ascii", + [naf_rtu ] = "rtu", + [naf_tcp ] = "tcp" +}; + + +#define __safe_strcnpy(str_dest, str_orig, max_size) { \ + strncpy(str_dest, str_orig, max_size); \ + str_dest[max_size - 1] = '\0'; \ +} + + +/* NOTE: The host, port and device parameters are strings that may be changed + * (by calling the following functions) after loading the compiled code + * (.so file) into memory, but before the code starts running + * (i.e. before __init_() gets called). + * This means that the host, port and device parameters may be changed + * _before_ they get mapped onto the str1 and str2 variables by __init_(), + * which is why the following functions must access the str1 and str2 + * parameters directly. + */ +const char * __modbus_get_ClientNode_config_name(int nodeid) {return client_nodes[nodeid].config_name; } +const char * __modbus_get_ClientNode_host (int nodeid) {return client_nodes[nodeid].str1; } +const char * __modbus_get_ClientNode_port (int nodeid) {return client_nodes[nodeid].str2; } +const char * __modbus_get_ClientNode_device (int nodeid) {return client_nodes[nodeid].str1; } +int __modbus_get_ClientNode_baud (int nodeid) {return client_nodes[nodeid].node_address.addr.rtu.baud; } +int __modbus_get_ClientNode_parity (int nodeid) {return client_nodes[nodeid].node_address.addr.rtu.parity; } +int __modbus_get_ClientNode_stop_bits (int nodeid) {return client_nodes[nodeid].node_address.addr.rtu.stop_bits;} +u64 __modbus_get_ClientNode_comm_period(int nodeid) {return client_nodes[nodeid].comm_period; } +const char * __modbus_get_ClientNode_addr_type (int nodeid) {return addr_type_str[client_nodes[nodeid].node_address.naf];} + +const char * __modbus_get_ServerNode_config_name(int nodeid) {return server_nodes[nodeid].config_name; } +const char * __modbus_get_ServerNode_host (int nodeid) {char*x=server_nodes[nodeid].str1; return (x[0]=='\0'?"#ANY#":x); } +const char * __modbus_get_ServerNode_port (int nodeid) {return server_nodes[nodeid].str2; } +const char * __modbus_get_ServerNode_device (int nodeid) {return server_nodes[nodeid].str1; } +int __modbus_get_ServerNode_baud (int nodeid) {return server_nodes[nodeid].node_address.addr.rtu.baud; } +int __modbus_get_ServerNode_parity (int nodeid) {return server_nodes[nodeid].node_address.addr.rtu.parity; } +int __modbus_get_ServerNode_stop_bits (int nodeid) {return server_nodes[nodeid].node_address.addr.rtu.stop_bits;} +u8 __modbus_get_ServerNode_slave_id (int nodeid) {return server_nodes[nodeid].slave_id; } +const char * __modbus_get_ServerNode_addr_type (int nodeid) {return addr_type_str[server_nodes[nodeid].node_address.naf];} + + +void __modbus_set_ClientNode_host (int nodeid, const char * value) {__safe_strcnpy(client_nodes[nodeid].str1, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ClientNode_port (int nodeid, const char * value) {__safe_strcnpy(client_nodes[nodeid].str2, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ClientNode_device (int nodeid, const char * value) {__safe_strcnpy(client_nodes[nodeid].str1, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ClientNode_baud (int nodeid, int value) {client_nodes[nodeid].node_address.addr.rtu.baud = value;} +void __modbus_set_ClientNode_parity (int nodeid, int value) {client_nodes[nodeid].node_address.addr.rtu.parity = value;} +void __modbus_set_ClientNode_stop_bits (int nodeid, int value) {client_nodes[nodeid].node_address.addr.rtu.stop_bits = value;} +void __modbus_set_ClientNode_comm_period(int nodeid, u64 value) {client_nodes[nodeid].comm_period = value;} + + +void __modbus_set_ServerNode_host (int nodeid, const char * value) {if (strcmp(value,"#ANY#")==0) value = ""; + __safe_strcnpy(server_nodes[nodeid].str1, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ServerNode_port (int nodeid, const char * value) {__safe_strcnpy(server_nodes[nodeid].str2, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ServerNode_device (int nodeid, const char * value) {__safe_strcnpy(server_nodes[nodeid].str1, value, MODBUS_PARAM_STRING_SIZE);} +void __modbus_set_ServerNode_baud (int nodeid, int value) {server_nodes[nodeid].node_address.addr.rtu.baud = value;} +void __modbus_set_ServerNode_parity (int nodeid, int value) {server_nodes[nodeid].node_address.addr.rtu.parity = value;} +void __modbus_set_ServerNode_stop_bits (int nodeid, int value) {server_nodes[nodeid].node_address.addr.rtu.stop_bits = value;} +void __modbus_set_ServerNode_slave_id (int nodeid, u8 value) {server_nodes[nodeid].slave_id = value;} +